/* * SVM.NET Library * Copyright (C) 2008 Matthew Johnson * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ using System; namespace SVM { /// /// Deals with the scaling of Problems so they have uniform ranges across all dimensions in order to /// result in better SVM performance. /// public static class Scaling { /// /// Default lower bound for scaling (-1). /// public const int DEFAULT_LOWER_BOUND = -1; /// /// Default upper bound for scaling (1). /// public const int DEFAULT_UPPER_BOUND = 1; /// /// Determines the Range transform for the provided problem. Uses the default lower and upper bounds. /// /// The Problem to analyze /// The Range transform for the problem public static RangeTransform DetermineRange(Problem prob) { return DetermineRangeTransform(prob, DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND); } /// /// Determines the Range transform for the provided problem. /// /// The Problem to analyze /// The lower bound for scaling /// The upper bound for scaling /// The Range transform for the problem public static RangeTransform DetermineRangeTransform(Problem prob, double lowerBound, double upperBound) { double[] minVals = new double[prob.MaxIndex]; double[] maxVals = new double[prob.MaxIndex]; for (int i = 0; i < prob.MaxIndex; i++) { minVals[i] = double.MaxValue; maxVals[i] = double.MinValue; } for (int i = 0; i < prob.Count; i++) { for (int j = 0; j < prob.X[i].Length; j++) { int index = prob.X[i][j].Index-1; double value = prob.X[i][j].Value; minVals[index] = Math.Min(minVals[index], value); maxVals[index] = Math.Max(maxVals[index], value); } } for (int i = 0; i < prob.MaxIndex; i++) { if (minVals[i] == double.MaxValue || maxVals[i] == double.MinValue) { minVals[i] = 0; maxVals[i] = 0; } } return new RangeTransform(minVals, maxVals, lowerBound, upperBound); } /// /// Scales a problem using the provided range. This will not affect the parameter. /// /// The problem to scale /// The Range transform to use in scaling /// The Scaled problem public static Problem Scale(Problem prob, IRangeTransform range) { Problem scaledProblem = new Problem(prob.Count, new double[prob.Count], new Node[prob.Count][], prob.MaxIndex); for (int i = 0; i < scaledProblem.Count; i++) { scaledProblem.X[i] = new Node[prob.X[i].Length]; for (int j = 0; j < scaledProblem.X[i].Length; j++) scaledProblem.X[i][j] = new Node(prob.X[i][j].Index, range.Transform(prob.X[i][j].Value, prob.X[i][j].Index)); scaledProblem.Y[i] = prob.Y[i]; } return scaledProblem; } } }