[3742] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[3742] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[4068] | 22 | using HeuristicLab.Core;
|
---|
[3742] | 23 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
[6891] | 24 | using HeuristicLab.Tests;
|
---|
[3062] | 25 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.Encodings.BinaryVectorEncoding_33.Tests {
|
---|
| 28 |
|
---|
| 29 |
|
---|
| 30 | /// <summary>
|
---|
| 31 | ///This is a test class for SinglePointCrossoverTest and is intended
|
---|
| 32 | ///to contain all SinglePointCrossoverTest Unit Tests
|
---|
| 33 | ///</summary>
|
---|
| 34 | [TestClass()]
|
---|
| 35 | public class UniformCrossoverTest {
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | private TestContext testContextInstance;
|
---|
| 39 |
|
---|
| 40 | /// <summary>
|
---|
| 41 | ///Gets or sets the test context which provides
|
---|
| 42 | ///information about and functionality for the current test run.
|
---|
| 43 | ///</summary>
|
---|
| 44 | public TestContext TestContext {
|
---|
| 45 | get {
|
---|
| 46 | return testContextInstance;
|
---|
| 47 | }
|
---|
| 48 | set {
|
---|
| 49 | testContextInstance = value;
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | #region Additional test attributes
|
---|
| 54 | //
|
---|
| 55 | //You can use the following additional attributes as you write your tests:
|
---|
| 56 | //
|
---|
| 57 | //Use ClassInitialize to run code before running the first test in the class
|
---|
| 58 | //[ClassInitialize()]
|
---|
| 59 | //public static void MyClassInitialize(TestContext testContext)
|
---|
| 60 | //{
|
---|
| 61 | //}
|
---|
| 62 | //
|
---|
| 63 | //Use ClassCleanup to run code after all tests in a class have run
|
---|
| 64 | //[ClassCleanup()]
|
---|
| 65 | //public static void MyClassCleanup()
|
---|
| 66 | //{
|
---|
| 67 | //}
|
---|
| 68 | //
|
---|
| 69 | //Use TestInitialize to run code before running each test
|
---|
| 70 | //[TestInitialize()]
|
---|
| 71 | //public void MyTestInitialize()
|
---|
| 72 | //{
|
---|
| 73 | //}
|
---|
| 74 | //
|
---|
| 75 | //Use TestCleanup to run code after each test has run
|
---|
| 76 | //[TestCleanup()]
|
---|
| 77 | //public void MyTestCleanup()
|
---|
| 78 | //{
|
---|
| 79 | //}
|
---|
| 80 | //
|
---|
| 81 | #endregion
|
---|
| 82 |
|
---|
| 83 | /// <summary>
|
---|
| 84 | ///A test for Cross
|
---|
| 85 | ///</summary>
|
---|
| 86 | [TestMethod()]
|
---|
| 87 | [DeploymentItem("HeuristicLab.Encodings.BinaryVectorEncoding-3.3.dll")]
|
---|
| 88 | public void SinglePointCrossoverCrossTest() {
|
---|
| 89 | UniformCrossover_Accessor target = new UniformCrossover_Accessor(new PrivateObject(typeof(UniformCrossover)));
|
---|
| 90 | ItemArray<BinaryVector> parents;
|
---|
| 91 | TestRandom random = new TestRandom();
|
---|
| 92 | bool exceptionFired;
|
---|
| 93 | // The following test checks if there is an exception when there are more than 2 parents
|
---|
| 94 | random.Reset();
|
---|
| 95 | parents = new ItemArray<BinaryVector>(new BinaryVector[] { new BinaryVector(5), new BinaryVector(6), new BinaryVector(4) });
|
---|
| 96 | exceptionFired = false;
|
---|
| 97 | try {
|
---|
| 98 | BinaryVector actual;
|
---|
| 99 | actual = target.Cross(random, parents);
|
---|
| 100 | }
|
---|
| 101 | catch (System.ArgumentException) {
|
---|
| 102 | exceptionFired = true;
|
---|
| 103 | }
|
---|
| 104 | Assert.IsTrue(exceptionFired);
|
---|
| 105 | // The following test checks if there is an exception when there are less than 2 parents
|
---|
| 106 | random.Reset();
|
---|
| 107 | parents = new ItemArray<BinaryVector>(new BinaryVector[] { new BinaryVector(4) });
|
---|
| 108 | exceptionFired = false;
|
---|
| 109 | try {
|
---|
| 110 | BinaryVector actual;
|
---|
| 111 | actual = target.Cross(random, parents);
|
---|
[4068] | 112 | }
|
---|
| 113 | catch (System.ArgumentException) {
|
---|
[3062] | 114 | exceptionFired = true;
|
---|
| 115 | }
|
---|
| 116 | Assert.IsTrue(exceptionFired);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | /// <summary>
|
---|
| 120 | ///A test for Apply
|
---|
| 121 | ///</summary>
|
---|
| 122 | [TestMethod()]
|
---|
| 123 | public void SinglePointCrossoverApplyTest() {
|
---|
| 124 | TestRandom random = new TestRandom();
|
---|
| 125 | BinaryVector parent1, parent2, expected, actual;
|
---|
| 126 | bool exceptionFired;
|
---|
| 127 | // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 49
|
---|
| 128 | random.Reset();
|
---|
| 129 | random.DoubleNumbers = new double[] { 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36 };
|
---|
| 130 | parent1 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false });
|
---|
| 131 | parent2 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true });
|
---|
[4068] | 132 | expected = new BinaryVector(new bool[] { false, true, false, false, false, false, false, false, false });
|
---|
[3062] | 133 | actual = UniformCrossover.Apply(random, parent1, parent2);
|
---|
| 134 | Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected));
|
---|
| 135 |
|
---|
| 136 | // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 49
|
---|
| 137 | random.Reset();
|
---|
| 138 | random.DoubleNumbers = new double[] { 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36 };
|
---|
| 139 | parent2 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false });
|
---|
| 140 | parent1 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true });
|
---|
| 141 | expected = new BinaryVector(new bool[] { true, false, false, true, true, false, false, false, true });
|
---|
| 142 | actual = UniformCrossover.Apply(random, parent1, parent2);
|
---|
| 143 | Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected));
|
---|
[4068] | 144 |
|
---|
[3062] | 145 | // The following test is not based on any published examples
|
---|
| 146 | random.Reset();
|
---|
| 147 | random.DoubleNumbers = new double[] { 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36 };
|
---|
| 148 | parent1 = new BinaryVector(new bool[] { false, true, true, false, false }); // this parent is longer
|
---|
| 149 | parent2 = new BinaryVector(new bool[] { false, true, true, false });
|
---|
| 150 | exceptionFired = false;
|
---|
| 151 | try {
|
---|
| 152 | actual = UniformCrossover.Apply(random, parent1, parent2);
|
---|
[4068] | 153 | }
|
---|
| 154 | catch (System.ArgumentException) {
|
---|
[3062] | 155 | exceptionFired = true;
|
---|
| 156 | }
|
---|
| 157 | Assert.IsTrue(exceptionFired);
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | /// <summary>
|
---|
| 161 | ///A test for SinglePointCrossover Constructor
|
---|
| 162 | ///</summary>
|
---|
| 163 | [TestMethod()]
|
---|
| 164 | public void SinglePointCrossoverConstructorTest() {
|
---|
| 165 | NPointCrossover target = new NPointCrossover();
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 | }
|
---|