#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Threading; using HeuristicLab.Algorithms.DataAnalysis; using HeuristicLab.Algorithms.EvolutionStrategy; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Algorithms.LocalSearch; using HeuristicLab.Algorithms.ParticleSwarmOptimization; using HeuristicLab.Algorithms.RAPGA; using HeuristicLab.Algorithms.ScatterSearch; using HeuristicLab.Algorithms.SimulatedAnnealing; using HeuristicLab.Algorithms.TabuSearch; using HeuristicLab.Algorithms.VariableNeighborhoodSearch; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Encodings.ScheduleEncoding.JobSequenceMatrix; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.ParallelEngine; using HeuristicLab.Persistence.Default.Xml; using HeuristicLab.Problems.ArtificialAnt; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Problems.Instances; using HeuristicLab.Problems.Instances.DataAnalysis; using HeuristicLab.Problems.Instances.TSPLIB; using HeuristicLab.Problems.Instances.VehicleRouting; using HeuristicLab.Problems.Knapsack; using HeuristicLab.Problems.Scheduling; using HeuristicLab.Problems.TestFunctions; using HeuristicLab.Problems.TravelingSalesman; using HeuristicLab.Problems.VehicleRouting; using HeuristicLab.Problems.VehicleRouting.Encodings.General; using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin; using HeuristicLab.Problems.VehicleRouting.ProblemInstances; using HeuristicLab.Selection; using HeuristicLab.SequentialEngine; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab_33.Tests { [TestClass] [DeploymentItem(@"HeuristicLab-3.3/Resources/C101.opt.txt")] [DeploymentItem(@"HeuristicLab-3.3/Resources/C101.txt")] public class SamplesTest { #region GA #region TSP [TestMethod] public void CreateGaTspSampleTest() { var ga = CreateGaTspSample(); XmlGenerator.Serialize(ga, "../../GA_TSP.hl"); } [TestMethod] public void RunGaTspSampleTest() { var ga = CreateGaTspSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); Assert.AreEqual(12332, GetDoubleResult(ga, "BestQuality")); Assert.AreEqual(13123.2, GetDoubleResult(ga, "CurrentAverageQuality")); Assert.AreEqual(14538, GetDoubleResult(ga, "CurrentWorstQuality")); Assert.AreEqual(99100, GetIntResult(ga, "EvaluatedSolutions")); } private GeneticAlgorithm CreateGaTspSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration var provider = new TSPLIBTSPInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single(); TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem(); tspProblem.Load(provider.LoadData(instance)); tspProblem.UseDistanceMatrix.Value = true; #endregion #region Algorithm Configuration ga.Name = "Genetic Algorithm - TSP"; ga.Description = "A genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)"; ga.Problem = tspProblem; ConfigureGeneticAlgorithmParameters( ga, 100, 1, 1000, 0.05); #endregion return ga; } #endregion #region VRP [TestMethod] public void CreateGaVrpSampleTest() { var ga = CreateGaVrpSample(); XmlGenerator.Serialize(ga, "../../GA_VRP.hl"); } [TestMethod] public void RunGaVrpSampleTest() { var ga = CreateGaVrpSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); Assert.AreEqual(1828.9368669428338, GetDoubleResult(ga, "BestQuality")); Assert.AreEqual(1830.1444308908331, GetDoubleResult(ga, "CurrentAverageQuality")); Assert.AreEqual(1871.7128510304112, GetDoubleResult(ga, "CurrentWorstQuality")); Assert.AreEqual(99100, GetIntResult(ga, "EvaluatedSolutions")); } private GeneticAlgorithm CreateGaVrpSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration VehicleRoutingProblem vrpProblem = new VehicleRoutingProblem(); SolomonFormatInstanceProvider instanceProvider = new SolomonInstanceProvider(); CVRPTWData data = instanceProvider.Import("C101.txt", "C101.opt.txt") as CVRPTWData; vrpProblem.Load(data); vrpProblem.Name = "C101 VRP (imported from Solomon)"; vrpProblem.Description = "Represents a Vehicle Routing Problem."; CVRPTWProblemInstance instance = vrpProblem.ProblemInstance as CVRPTWProblemInstance; instance.DistanceFactor.Value = 1; instance.FleetUsageFactor.Value = 100; instance.OverloadPenalty.Value = 100; instance.TardinessPenalty.Value = 100; instance.TimeFactor.Value = 0; vrpProblem.MaximizationParameter.Value.Value = false; instance.UseDistanceMatrix.Value = true; instance.Vehicles.Value = 25; #endregion #region Algorithm Configuration ga.Name = "Genetic Algorithm - VRP"; ga.Description = "A genetic algorithm which solves the \"C101\" vehicle routing problem (imported from Solomon)"; ga.Problem = vrpProblem; ConfigureGeneticAlgorithmParameters( ga, 100, 1, 1000, 0.05, 3); var xOver = (MultiVRPSolutionCrossover)ga.Crossover; foreach (var op in xOver.Operators) { xOver.Operators.SetItemCheckedState(op, false); } xOver.Operators.SetItemCheckedState(xOver.Operators .OfType() .Single(), true); xOver.Operators.SetItemCheckedState(xOver.Operators .OfType() .Single(), true); var manipulator = (MultiVRPSolutionManipulator)ga.Mutator; foreach (var op in manipulator.Operators) { manipulator.Operators.SetItemCheckedState(op, false); } manipulator.Operators.SetItemCheckedState(manipulator.Operators .OfType() .Single(), true); manipulator.Operators.SetItemCheckedState(manipulator.Operators .OfType() .Single(), true); #endregion return ga; } #endregion #region ArtificialAnt [TestMethod] public void CreateGpArtificialAntSampleTest() { var ga = CreateGpArtificialAntSample(); XmlGenerator.Serialize(ga, "../../SGP_SantaFe.hl"); } [TestMethod] public void RunGpArtificialAntSampleTest() { var ga = CreateGpArtificialAntSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); Assert.AreEqual(81, GetDoubleResult(ga, "BestQuality")); Assert.AreEqual(48.19, GetDoubleResult(ga, "CurrentAverageQuality")); Assert.AreEqual(0, GetDoubleResult(ga, "CurrentWorstQuality")); Assert.AreEqual(50950, GetIntResult(ga, "EvaluatedSolutions")); } public GeneticAlgorithm CreateGpArtificialAntSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration ArtificialAntProblem antProblem = new ArtificialAntProblem(); antProblem.BestKnownQuality.Value = 89; antProblem.MaxExpressionDepth.Value = 10; antProblem.MaxExpressionLength.Value = 100; antProblem.MaxFunctionArguments.Value = 3; antProblem.MaxFunctionDefinitions.Value = 3; antProblem.MaxTimeSteps.Value = 600; #endregion #region Algorithm Configuration ga.Name = "Genetic Programming - Artificial Ant"; ga.Description = "A standard genetic programming algorithm to solve the artificial ant problem (Santa-Fe trail)"; ga.Problem = antProblem; ConfigureGeneticAlgorithmParameters( ga, 1000, 1, 50, 0.15, 5); var mutator = (MultiSymbolicExpressionTreeArchitectureManipulator)ga.Mutator; mutator.Operators.SetItemCheckedState(mutator.Operators .OfType() .Single(), false); mutator.Operators.SetItemCheckedState(mutator.Operators .OfType() .Single(), false); mutator.Operators.SetItemCheckedState(mutator.Operators .OfType() .Single(), false); mutator.Operators.SetItemCheckedState(mutator.Operators .OfType() .Single(), false); #endregion return ga; } #endregion #region Symbolic Regression [TestMethod] public void CreateGpSymbolicRegressionSampleTest() { var ga = CreateGpSymbolicRegressionSample(); XmlGenerator.Serialize(ga, "../../SGP_SymbReg.hl"); } [TestMethod] public void RunGpSymbolicRegressionSampleTest() { var ga = CreateGpSymbolicRegressionSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); Assert.AreEqual(0.790111952286997, GetDoubleResult(ga, "BestQuality"), 1E-8); Assert.AreEqual(0.547381191721895, GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8); Assert.AreEqual(0, GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8); Assert.AreEqual(50950, GetIntResult(ga, "EvaluatedSolutions")); } private GeneticAlgorithm CreateGpSymbolicRegressionSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration SymbolicRegressionSingleObjectiveProblem symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); symbRegProblem.Name = "Tower Symbolic Regression Problem"; symbRegProblem.Description = "Tower Dataset (downloaded from: http://vanillamodeling.com/realproblems.html)"; RegressionRealWorldInstanceProvider provider = new RegressionRealWorldInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("TowerData")).Single(); var towerProblemData = (RegressionProblemData)provider.LoadData(instance); towerProblemData.TargetVariableParameter.Value = towerProblemData.TargetVariableParameter.ValidValues .First(v => v.Value == "towerResponse"); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "x1"), true); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "x7"), false); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "x11"), false); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "x16"), false); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "x21"), false); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "x25"), false); towerProblemData.InputVariables.SetItemCheckedState( towerProblemData.InputVariables.Single(x => x.Value == "towerResponse"), false); towerProblemData.TrainingPartition.Start = 0; towerProblemData.TrainingPartition.End = 4000; towerProblemData.TestPartition.Start = 4000; towerProblemData.TestPartition.End = 4999; towerProblemData.Name = "Data imported from towerData.txt"; towerProblemData.Description = "Chemical concentration at top of distillation tower, dataset downloaded from: http://vanillamodeling.com/realproblems.html, best R² achieved with nu-SVR = 0.97"; symbRegProblem.ProblemData = towerProblemData; // configure grammar var grammar = new TypeCoherentExpressionGrammar(); grammar.ConfigureAsDefaultRegressionGrammar(); grammar.Symbols.OfType().Single().InitialFrequency = 0.0; var varSymbol = grammar.Symbols.OfType().Where(x => !(x is LaggedVariable)).Single(); varSymbol.WeightMu = 1.0; varSymbol.WeightSigma = 1.0; varSymbol.WeightManipulatorMu = 0.0; varSymbol.WeightManipulatorSigma = 0.05; varSymbol.MultiplicativeWeightManipulatorSigma = 0.03; var constSymbol = grammar.Symbols.OfType().Single(); constSymbol.MaxValue = 20; constSymbol.MinValue = -20; constSymbol.ManipulatorMu = 0.0; constSymbol.ManipulatorSigma = 1; constSymbol.MultiplicativeManipulatorSigma = 0.03; symbRegProblem.SymbolicExpressionTreeGrammar = grammar; // configure remaining problem parameters symbRegProblem.BestKnownQuality.Value = 0.97; symbRegProblem.FitnessCalculationPartition.Start = 0; symbRegProblem.FitnessCalculationPartition.End = 2800; symbRegProblem.ValidationPartition.Start = 2800; symbRegProblem.ValidationPartition.End = 4000; symbRegProblem.RelativeNumberOfEvaluatedSamples.Value = 1; symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 150; symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 12; symbRegProblem.MaximumFunctionDefinitions.Value = 0; symbRegProblem.MaximumFunctionArguments.Value = 0; symbRegProblem.EvaluatorParameter.Value = new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(); #endregion #region Algorithm Configuration ga.Problem = symbRegProblem; ga.Name = "Genetic Programming - Symbolic Regression"; ga.Description = "A standard genetic programming algorithm to solve a symbolic regression problem (tower dataset)"; ConfigureGeneticAlgorithmParameters( ga, 1000, 1, 50, 0.15, 5); var mutator = (MultiSymbolicExpressionTreeManipulator)ga.Mutator; mutator.Operators.OfType().Single().ShakingFactor = 0.1; mutator.Operators.OfType().Single().ShakingFactor = 1.0; ga.Analyzer.Operators.SetItemCheckedState( ga.Analyzer.Operators .OfType() .Single(), false); ga.Analyzer.Operators.SetItemCheckedState( ga.Analyzer.Operators .OfType() .First(), false); #endregion return ga; } #endregion #region Symbolic Classification [TestMethod] public void CreateGpSymbolicClassificationSampleTest() { var ga = CreateGpSymbolicClassificationSample(); XmlGenerator.Serialize(ga, "../../SGP_SymbClass.hl"); } [TestMethod] public void RunGpSymbolicClassificationSampleTest() { var ga = CreateGpSymbolicClassificationSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); Assert.AreEqual(0.14458636369766503, GetDoubleResult(ga, "BestQuality"), 1E-8); Assert.AreEqual(2.5613992769560352, GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8); Assert.AreEqual(100.62175156249987, GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8); Assert.AreEqual(100900, GetIntResult(ga, "EvaluatedSolutions")); var bestTrainingSolution = (IClassificationSolution)ga.Results["Best training solution"].Value; Assert.AreEqual(0.80625, bestTrainingSolution.TrainingAccuracy, 1E-8); Assert.AreEqual(0.782608695652174, bestTrainingSolution.TestAccuracy, 1E-8); } private GeneticAlgorithm CreateGpSymbolicClassificationSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration SymbolicClassificationSingleObjectiveProblem symbClassProblem = new SymbolicClassificationSingleObjectiveProblem(); symbClassProblem.Name = "Mammography Classification Problem"; symbClassProblem.Description = "Mammography dataset imported from the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass)"; UCIInstanceProvider provider = new UCIInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("Mammography, M. Elter, 2007")).Single(); var mammoData = (ClassificationProblemData)provider.LoadData(instance); mammoData.TargetVariableParameter.Value = mammoData.TargetVariableParameter.ValidValues .First(v => v.Value == "Severity"); mammoData.InputVariables.SetItemCheckedState( mammoData.InputVariables.Single(x => x.Value == "BI-RADS"), false); mammoData.InputVariables.SetItemCheckedState( mammoData.InputVariables.Single(x => x.Value == "Age"), true); mammoData.InputVariables.SetItemCheckedState( mammoData.InputVariables.Single(x => x.Value == "Shape"), true); mammoData.InputVariables.SetItemCheckedState( mammoData.InputVariables.Single(x => x.Value == "Margin"), true); mammoData.InputVariables.SetItemCheckedState( mammoData.InputVariables.Single(x => x.Value == "Density"), true); mammoData.InputVariables.SetItemCheckedState( mammoData.InputVariables.Single(x => x.Value == "Severity"), false); mammoData.TrainingPartition.Start = 0; mammoData.TrainingPartition.End = 800; mammoData.TestPartition.Start = 800; mammoData.TestPartition.End = 961; mammoData.Name = "Data imported from mammographic_masses.csv"; mammoData.Description = "Original dataset: http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass, missing values have been replaced with median values."; symbClassProblem.ProblemData = mammoData; // configure grammar var grammar = new TypeCoherentExpressionGrammar(); grammar.ConfigureAsDefaultClassificationGrammar(); grammar.Symbols.OfType().Single().Enabled = false; var varSymbol = grammar.Symbols.OfType().Where(x => !(x is LaggedVariable)).Single(); varSymbol.WeightMu = 1.0; varSymbol.WeightSigma = 1.0; varSymbol.WeightManipulatorMu = 0.0; varSymbol.WeightManipulatorSigma = 0.05; varSymbol.MultiplicativeWeightManipulatorSigma = 0.03; var constSymbol = grammar.Symbols.OfType().Single(); constSymbol.MaxValue = 20; constSymbol.MinValue = -20; constSymbol.ManipulatorMu = 0.0; constSymbol.ManipulatorSigma = 1; constSymbol.MultiplicativeManipulatorSigma = 0.03; symbClassProblem.SymbolicExpressionTreeGrammar = grammar; // configure remaining problem parameters symbClassProblem.BestKnownQuality.Value = 0.0; symbClassProblem.FitnessCalculationPartition.Start = 0; symbClassProblem.FitnessCalculationPartition.End = 400; symbClassProblem.ValidationPartition.Start = 400; symbClassProblem.ValidationPartition.End = 800; symbClassProblem.RelativeNumberOfEvaluatedSamples.Value = 1; symbClassProblem.MaximumSymbolicExpressionTreeLength.Value = 100; symbClassProblem.MaximumSymbolicExpressionTreeDepth.Value = 10; symbClassProblem.MaximumFunctionDefinitions.Value = 0; symbClassProblem.MaximumFunctionArguments.Value = 0; symbClassProblem.EvaluatorParameter.Value = new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(); #endregion #region Algorithm Configuration ga.Problem = symbClassProblem; ga.Name = "Genetic Programming - Symbolic Classification"; ga.Description = "A standard genetic programming algorithm to solve a classification problem (Mammographic+Mass dataset)"; ConfigureGeneticAlgorithmParameters( ga, 1000, 1, 100, 0.15, 5 ); var mutator = (MultiSymbolicExpressionTreeManipulator)ga.Mutator; mutator.Operators.OfType().Single().ShakingFactor = 0.1; mutator.Operators.OfType().Single().ShakingFactor = 1.0; ga.Analyzer.Operators.SetItemCheckedState( ga.Analyzer.Operators .OfType() .Single(), false); ga.Analyzer.Operators.SetItemCheckedState( ga.Analyzer.Operators .OfType() .First(), false); #endregion return ga; } #endregion #region LawnMower [TestMethod] public void RunGpLawnMowerSampleTest() { var ga = CreateGpLawnMowerSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); } public GeneticAlgorithm CreateGpLawnMowerSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration var problem = new HeuristicLab.Problems.LawnMower.Problem(); #endregion #region Algorithm Configuration ga.Name = "Genetic Programming - Lawn Mower"; ga.Description = "A standard genetic programming algorithm to solve the lawn mower problem"; ga.Problem = problem; ConfigureGeneticAlgorithmParameters( ga, 1000, 1, 50, 0.25, 5); var mutator = (MultiSymbolicExpressionTreeArchitectureManipulator)ga.Mutator; mutator.Operators.SetItemCheckedState(mutator.Operators .OfType() .Single(), false); #endregion return ga; } #endregion #endregion #region ES #region Griewank [TestMethod] public void CreateEsGriewankSampleTest() { var es = CreateEsGriewankSample(); XmlGenerator.Serialize(es, "../../ES_Griewank.hl"); } [TestMethod] public void RunEsGriewankSampleTest() { var es = CreateEsGriewankSample(); es.SetSeedRandomly.Value = false; RunAlgorithm(es); Assert.AreEqual(0, GetDoubleResult(es, "BestQuality")); Assert.AreEqual(0, GetDoubleResult(es, "CurrentAverageQuality")); Assert.AreEqual(0, GetDoubleResult(es, "CurrentWorstQuality")); Assert.AreEqual(100020, GetIntResult(es, "EvaluatedSolutions")); } private EvolutionStrategy CreateEsGriewankSample() { EvolutionStrategy es = new EvolutionStrategy(); #region Problem Configuration SingleObjectiveTestFunctionProblem problem = new SingleObjectiveTestFunctionProblem(); problem.ProblemSize.Value = 10; problem.EvaluatorParameter.Value = new GriewankEvaluator(); problem.SolutionCreatorParameter.Value = new UniformRandomRealVectorCreator(); problem.Maximization.Value = false; problem.Bounds = new DoubleMatrix(new double[,] { { -600, 600 } }); problem.BestKnownQuality.Value = 0; problem.BestKnownSolutionParameter.Value = new RealVector(10); problem.Name = "Single Objective Test Function"; problem.Description = "Test function with real valued inputs and a single objective."; #endregion #region Algorithm Configuration es.Name = "Evolution Strategy - Griewank"; es.Description = "An evolution strategy which solves the 10-dimensional Griewank test function"; es.Problem = problem; ConfigureEvolutionStrategyParameters( es, 20, 500, 2, 200, false); StdDevStrategyVectorCreator strategyCreator = (StdDevStrategyVectorCreator)es.StrategyParameterCreator; strategyCreator.BoundsParameter.Value = new DoubleMatrix(new double[,] { { 1, 20 } }); StdDevStrategyVectorManipulator strategyManipulator = (StdDevStrategyVectorManipulator)es.StrategyParameterManipulator; strategyManipulator.BoundsParameter.Value = new DoubleMatrix(new double[,] { { 1E-12, 30 } }); strategyManipulator.GeneralLearningRateParameter.Value = new DoubleValue(0.22360679774997896); strategyManipulator.LearningRateParameter.Value = new DoubleValue(0.39763536438352531); #endregion return es; } #endregion #endregion #region Island GA #region TSP [TestMethod] public void CreateIslandGaTspSampleTest() { var ga = CreateIslandGaTspSample(); XmlGenerator.Serialize(ga, "../../IslandGA_TSP.hl"); } [TestMethod] public void RunIslandGaTspSampleTest() { var ga = CreateIslandGaTspSample(); ga.SetSeedRandomly.Value = false; RunAlgorithm(ga); Assert.AreEqual(9918, GetDoubleResult(ga, "BestQuality")); Assert.AreEqual(10324.64, GetDoubleResult(ga, "CurrentAverageQuality")); Assert.AreEqual(11823, GetDoubleResult(ga, "CurrentWorstQuality")); Assert.AreEqual(495500, GetIntResult(ga, "EvaluatedSolutions")); } private IslandGeneticAlgorithm CreateIslandGaTspSample() { IslandGeneticAlgorithm ga = new IslandGeneticAlgorithm(); #region Problem Configuration var provider = new TSPLIBTSPInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single(); TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem(); tspProblem.Load(provider.LoadData(instance)); tspProblem.UseDistanceMatrix.Value = true; #endregion #region Algorithm Configuration ga.Name = "Island Genetic Algorithm - TSP"; ga.Description = "An island genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)"; ga.Problem = tspProblem; ConfigureIslandGeneticAlgorithmParameters( ga, 100, 1, 1000, 0.05, 5, 50, 0.25); #endregion return ga; } #endregion #endregion #region LS #region Knapsack [TestMethod] public void CreateLocalSearchKnapsackSampleTest() { var ls = CreateLocalSearchKnapsackSample(); XmlGenerator.Serialize(ls, "../../LS_Knapsack.hl"); } [TestMethod] public void RunLocalSearchKnapsackSampleTest() { var ls = CreateLocalSearchKnapsackSample(); ls.SetSeedRandomly.Value = false; RunAlgorithm(ls); Assert.AreEqual(345, GetDoubleResult(ls, "BestQuality")); Assert.AreEqual(340.70731707317071, GetDoubleResult(ls, "CurrentAverageQuality")); Assert.AreEqual(337, GetDoubleResult(ls, "CurrentWorstQuality")); Assert.AreEqual(82000, GetIntResult(ls, "EvaluatedMoves")); } private LocalSearch CreateLocalSearchKnapsackSample() { LocalSearch ls = new LocalSearch(); #region Problem Configuration KnapsackProblem problem = new KnapsackProblem(); problem.BestKnownQuality = new DoubleValue(362); problem.BestKnownSolution = new HeuristicLab.Encodings.BinaryVectorEncoding.BinaryVector(new bool[] { true , false, false, true , true , true , true , true , false, true , true , true , true , true , true , false, true , false, true , true , false, true , true , false, true , false, true , true , true , false, true , true , false, true , true , false, true , false, true , true , true , true , true , true , true , true , true , true , true , true , true , false, true , false, false, true , true , false, true , true , true , true , true , true , true , true , false, true , false, true , true , true , true , false, true , true , true , true , true , true , true , true}); problem.EvaluatorParameter.Value = new KnapsackEvaluator(); problem.SolutionCreatorParameter.Value = new RandomBinaryVectorCreator(); problem.KnapsackCapacity.Value = 297; problem.Maximization.Value = true; problem.Penalty.Value = 1; problem.Values = new IntArray(new int[] { 6, 1, 1, 6, 7, 8, 7, 4, 2, 5, 2, 6, 7, 8, 7, 1, 7, 1, 9, 4, 2, 6, 5, 3, 5, 3, 3, 6, 5, 2, 4, 9, 4, 5, 7, 1, 4, 3, 5, 5, 8, 3, 6, 7, 3, 9, 7, 7, 5, 5, 7, 1, 4, 4, 3, 9, 5, 1, 6, 2, 2, 6, 1, 6, 5, 4, 4, 7, 1, 8, 9, 9, 7, 4, 3, 8, 7, 5, 7, 4, 4, 5}); problem.Weights = new IntArray(new int[] { 1, 9, 3, 6, 5, 3, 8, 1, 7, 4, 2, 1, 2, 7, 9, 9, 8, 4, 9, 2, 4, 8, 3, 7, 5, 7, 5, 5, 1, 9, 8, 7, 8, 9, 1, 3, 3, 8, 8, 5, 1, 2, 4, 3, 6, 9, 4, 4, 9, 7, 4, 5, 1, 9, 7, 6, 7, 4, 7, 1, 2, 1, 2, 9, 8, 6, 8, 4, 7, 6, 7, 5, 3, 9, 4, 7, 4, 6, 1, 2, 5, 4}); problem.Name = "Knapsack Problem"; problem.Description = "Represents a Knapsack problem."; #endregion #region Algorithm Configuration ls.Name = "Local Search - Knapsack"; ls.Description = "A local search algorithm that solves a randomly generated Knapsack problem"; ls.Problem = problem; ls.MaximumIterations.Value = 1000; ls.MoveEvaluator = ls.MoveEvaluatorParameter.ValidValues .OfType() .Single(); ls.MoveGenerator = ls.MoveGeneratorParameter.ValidValues .OfType() .Single(); ls.MoveMaker = ls.MoveMakerParameter.ValidValues .OfType() .Single(); ls.SampleSize.Value = 100; ls.Seed.Value = 0; ls.SetSeedRandomly.Value = true; #endregion ls.Engine = new ParallelEngine(); return ls; } #endregion #endregion #region PSO #region Schwefel [TestMethod] public void CreatePsoSchwefelSampleTest() { var pso = CreatePsoSchwefelSample(); XmlGenerator.Serialize(pso, "../../PSO_Schwefel.hl"); } [TestMethod] public void RunPsoSchwefelSampleTest() { var pso = CreatePsoSchwefelSample(); pso.SetSeedRandomly.Value = false; RunAlgorithm(pso); if (!Environment.Is64BitProcess) { Assert.AreEqual(118.44027985932837, GetDoubleResult(pso, "BestQuality")); Assert.AreEqual(140.71570105946438, GetDoubleResult(pso, "CurrentAverageQuality")); Assert.AreEqual(220.956806502853, GetDoubleResult(pso, "CurrentWorstQuality")); Assert.AreEqual(1000, GetIntResult(pso, "Iterations")); } else { Assert.AreEqual(118.43958282879345, GetDoubleResult(pso, "BestQuality")); Assert.AreEqual(139.43946864779372, GetDoubleResult(pso, "CurrentAverageQuality")); Assert.AreEqual(217.14654589055152, GetDoubleResult(pso, "CurrentWorstQuality")); Assert.AreEqual(1000, GetIntResult(pso, "Iterations")); } } private ParticleSwarmOptimization CreatePsoSchwefelSample() { ParticleSwarmOptimization pso = new ParticleSwarmOptimization(); #region Problem Configuration var problem = new SingleObjectiveTestFunctionProblem(); problem.BestKnownQuality.Value = 0.0; problem.BestKnownSolutionParameter.Value = new RealVector(new double[] { 420.968746, 420.968746 }); problem.Bounds = new DoubleMatrix(new double[,] { { -500, 500 } }); problem.EvaluatorParameter.Value = new SchwefelEvaluator(); problem.Maximization.Value = false; problem.ProblemSize.Value = 2; problem.SolutionCreatorParameter.Value = new UniformRandomRealVectorCreator(); #endregion #region Algorithm Configuration pso.Name = "Particle Swarm Optimization - Schwefel"; pso.Description = "A particle swarm optimization algorithm which solves the 2-dimensional Schwefel test function (based on the description in Pedersen, M.E.H. (2010). PhD thesis. University of Southampton)"; pso.Problem = problem; pso.Inertia.Value = 10; pso.MaxIterations.Value = 1000; pso.NeighborBestAttraction.Value = 0.5; pso.PersonalBestAttraction.Value = -0.01; pso.SwarmSize.Value = 50; var inertiaUpdater = pso.InertiaUpdaterParameter.ValidValues .OfType() .Single(); inertiaUpdater.StartValueParameter.Value = new DoubleValue(10); inertiaUpdater.EndValueParameter.Value = new DoubleValue(1); pso.InertiaUpdater = inertiaUpdater; pso.ParticleCreator = pso.ParticleCreatorParameter.ValidValues .OfType() .Single(); var swarmUpdater = pso.SwarmUpdaterParameter.ValidValues .OfType() .Single(); swarmUpdater.VelocityBoundsIndexParameter.ActualName = "Iterations"; swarmUpdater.VelocityBoundsParameter.Value = new DoubleMatrix(new double[,] { { -10, 10 } }); swarmUpdater.VelocityBoundsStartValueParameter.Value = new DoubleValue(10.0); swarmUpdater.VelocityBoundsEndValueParameter.Value = new DoubleValue(1.0); swarmUpdater.VelocityBoundsScalingOperatorParameter.Value = swarmUpdater.VelocityBoundsScalingOperatorParameter.ValidValues .OfType() .Single(); pso.TopologyInitializer = null; pso.TopologyUpdater = null; pso.SwarmUpdater = swarmUpdater; pso.Seed.Value = 0; pso.SetSeedRandomly.Value = true; #endregion pso.Engine = new ParallelEngine(); return pso; } #endregion #endregion #region SA #region Rastrigin [TestMethod] public void CreateSimulatedAnnealingRastriginSampleTest() { var sa = CreateSimulatedAnnealingRastriginSample(); XmlGenerator.Serialize(sa, "../../SA_Rastrigin.hl"); } [TestMethod] public void RunSimulatedAnnealingRastriginSampleTest() { var sa = CreateSimulatedAnnealingRastriginSample(); sa.SetSeedRandomly.Value = false; RunAlgorithm(sa); Assert.AreEqual(0.00014039606034543795, GetDoubleResult(sa, "BestQuality")); Assert.AreEqual(5000, GetIntResult(sa, "EvaluatedMoves")); } private SimulatedAnnealing CreateSimulatedAnnealingRastriginSample() { SimulatedAnnealing sa = new SimulatedAnnealing(); #region Problem Configuration var problem = new SingleObjectiveTestFunctionProblem(); problem.BestKnownQuality.Value = 0.0; problem.BestKnownSolutionParameter.Value = new RealVector(new double[] { 0, 0 }); problem.Bounds = new DoubleMatrix(new double[,] { { -5.12, 5.12 } }); problem.EvaluatorParameter.Value = new RastriginEvaluator(); problem.Maximization.Value = false; problem.ProblemSize.Value = 2; problem.SolutionCreatorParameter.Value = new UniformRandomRealVectorCreator(); #endregion #region Algorithm Configuration sa.Name = "Simulated Annealing - Rastrigin"; sa.Description = "A simulated annealing algorithm that solves the 2-dimensional Rastrigin test function"; sa.Problem = problem; var annealingOperator = sa.AnnealingOperatorParameter.ValidValues .OfType() .Single(); annealingOperator.StartIndexParameter.Value = new IntValue(0); sa.AnnealingOperator = annealingOperator; sa.EndTemperature.Value = 1E-6; sa.InnerIterations.Value = 50; sa.MaximumIterations.Value = 100; var moveEvaluator = sa.MoveEvaluatorParameter.ValidValues .OfType() .Single(); moveEvaluator.A.Value = 10; sa.MoveEvaluator = moveEvaluator; var moveGenerator = sa.MoveGeneratorParameter.ValidValues .OfType() .Single(); moveGenerator.SigmaParameter.Value = new DoubleValue(1); sa.MoveGenerator = moveGenerator; sa.MoveMaker = sa.MoveMakerParameter.ValidValues .OfType() .Single(); sa.Seed.Value = 0; sa.SetSeedRandomly.Value = true; sa.StartTemperature.Value = 1; #endregion sa.Engine = new ParallelEngine(); return sa; } #endregion #endregion #region TS #region TSP [TestMethod] public void CreateTabuSearchTspSampleTest() { var ts = CreateTabuSearchTspSample(); XmlGenerator.Serialize(ts, "../../TS_TSP.hl"); } [TestMethod] public void RunTabuSearchTspSampleTest() { var ts = CreateTabuSearchTspSample(); ts.SetSeedRandomly.Value = false; RunAlgorithm(ts); Assert.AreEqual(6441, GetDoubleResult(ts, "BestQuality")); Assert.AreEqual(7401.666666666667, GetDoubleResult(ts, "CurrentAverageQuality")); Assert.AreEqual(8418, GetDoubleResult(ts, "CurrentWorstQuality")); Assert.AreEqual(750000, GetIntResult(ts, "EvaluatedMoves")); } private TabuSearch CreateTabuSearchTspSample() { TabuSearch ts = new TabuSearch(); #region Problem Configuration var provider = new TSPLIBTSPInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single(); TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem(); tspProblem.Load(provider.LoadData(instance)); tspProblem.UseDistanceMatrix.Value = true; #endregion #region Algorithm Configuration ts.Name = "Tabu Search - TSP"; ts.Description = "A tabu search algorithm that solves the \"ch130\" TSP (imported from TSPLIB)"; ts.Problem = tspProblem; ts.MaximumIterations.Value = 1000; // move generator has to be set first var moveGenerator = ts.MoveGeneratorParameter.ValidValues .OfType() .Single(); ts.MoveGenerator = moveGenerator; var moveEvaluator = ts.MoveEvaluatorParameter.ValidValues .OfType() .Single(); ts.MoveEvaluator = moveEvaluator; var moveMaker = ts.MoveMakerParameter.ValidValues .OfType() .Single(); ts.MoveMaker = moveMaker; ts.SampleSize.Value = 750; ts.Seed.Value = 0; ts.SetSeedRandomly.Value = true; var tabuChecker = ts.TabuCheckerParameter.ValidValues .OfType() .Single(); tabuChecker.UseAspirationCriterion.Value = true; ts.TabuChecker = tabuChecker; var tabuMaker = ts.TabuMakerParameter.ValidValues .OfType() .Single(); ts.TabuMaker = tabuMaker; ts.TabuTenure.Value = 60; #endregion ts.Engine = new ParallelEngine(); return ts; } #endregion #endregion #region VNS #region TSP [TestMethod] public void CreateVnsTspSampleTest() { var vns = CreateVnsTspSample(); XmlGenerator.Serialize(vns, "../../VNS_TSP.hl"); } [TestMethod] public void RunVnsTspSampleTest() { var vns = CreateVnsTspSample(); vns.SetSeedRandomly = false; RunAlgorithm(vns); Assert.AreEqual(867, GetDoubleResult(vns, "BestQuality")); Assert.AreEqual(867, GetDoubleResult(vns, "CurrentAverageQuality")); Assert.AreEqual(867, GetDoubleResult(vns, "CurrentWorstQuality")); Assert.AreEqual(12975173, GetIntResult(vns, "EvaluatedSolutions")); } private VariableNeighborhoodSearch CreateVnsTspSample() { VariableNeighborhoodSearch vns = new VariableNeighborhoodSearch(); #region Problem Configuration TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem(); tspProblem.BestKnownSolution = new Permutation(PermutationTypes.Absolute, new int[] { 117, 65, 73, 74, 75, 76, 82, 86, 87, 94, 100, 106, 115, 120, 124, 107, 101, 108, 109, 102, 97, 90, 96, 95, 88, 89, 84, 78, 69, 57, 68, 56, 44, 55, 45, 36, 46, 37, 38, 47, 48, 59, 49, 58, 70, 77, 83, 79, 50, 80, 85, 98, 103, 110, 116, 121, 125, 133, 132, 138, 139, 146, 147, 159, 168, 169, 175, 182, 188, 201, 213, 189, 214, 221, 230, 246, 262, 276, 284, 275, 274, 261, 245, 229, 220, 228, 243, 259, 273, 282, 272, 258, 242, 257, 293, 292, 302, 310, 319, 320, 327, 326, 333, 340, 346, 339, 345, 344, 337, 338, 332, 325, 318, 309, 301, 291, 271, 251, 270, 233, 250, 269, 268, 280, 290, 300, 415, 440, 416, 417, 441, 458, 479, 418, 419, 395, 420, 442, 421, 396, 397, 422, 423, 461, 481, 502, 460, 501, 459, 480, 500, 517, 531, 516, 530, 499, 478, 457, 439, 414, 413, 412, 438, 456, 477, 498, 515, 529, 538, 547, 558, 559, 560, 548, 539, 549, 561, 562, 551, 550, 532, 540, 533, 541, 518, 534, 542, 552, 553, 554, 555, 535, 543, 556, 544, 536, 522, 505, 521, 520, 504, 519, 503, 482, 462, 463, 464, 483, 443, 465, 484, 506, 485, 507, 508, 487, 467, 486, 466, 445, 428, 444, 424, 425, 426, 427, 398, 399, 400, 381, 382, 371, 372, 401, 429, 446, 430, 402, 383, 366, 356, 357, 352, 385, 384, 403, 431, 447, 469, 468, 488, 489, 490, 470, 471, 448, 432, 433, 404, 405, 386, 373, 374, 367, 376, 375, 387, 491, 509, 537, 510, 492, 472, 449, 388, 389, 406, 450, 407, 377, 368, 359, 354, 350, 335, 324, 330, 390, 434, 451, 473, 493, 511, 523, 545, 563, 565, 567, 570, 569, 578, 577, 576, 575, 574, 573, 572, 580, 584, 583, 582, 587, 586, 585, 581, 579, 571, 568, 566, 564, 557, 546, 527, 513, 526, 525, 524, 512, 495, 494, 474, 452, 436, 409, 435, 453, 475, 496, 514, 528, 497, 455, 476, 454, 437, 411, 410, 394, 393, 392, 380, 370, 379, 408, 391, 378, 369, 364, 365, 361, 355, 351, 343, 336, 331, 317, 299, 286, 287, 278, 263, 264, 265, 223, 202, 248, 266, 279, 288, 289, 281, 267, 249, 232, 224, 216, 215, 204, 192, 193, 194, 186, 179, 185, 203, 191, 190, 177, 171, 161, 128, 135, 140, 149, 162, 150, 163, 172, 178, 173, 164, 152, 151, 141, 153, 165, 154, 142, 155, 143, 137, 136, 130, 129, 118, 114, 113, 105, 119, 123, 131, 144, 156, 157, 145, 158, 166, 167, 174, 180, 181, 187, 195, 205, 217, 226, 236, 225, 234, 252, 235, 253, 254, 255, 238, 239, 240, 241, 256, 237, 206, 207, 208, 196, 197, 198, 209, 199, 200, 211, 212, 219, 210, 218, 227, 244, 260, 283, 294, 295, 303, 296, 311, 304, 297, 298, 305, 285, 306, 314, 329, 321, 313, 312, 328, 334, 341, 347, 348, 353, 358, 362, 363, 360, 349, 342, 322, 323, 315, 316, 308, 307, 277, 247, 231, 222, 184, 183, 176, 170, 160, 148, 134, 127, 126, 111, 104, 92, 91, 71, 60, 51, 52, 40, 32, 23, 21, 20, 18, 17, 16, 14, 13, 11, 10, 7, 6, 5, 2, 1, 0, 3, 4, 31, 39, 25, 30, 35, 34, 33, 43, 54, 42, 27, 28, 29, 9, 8, 12, 15, 19, 22, 24, 26, 41, 67, 66, 64, 63, 53, 62, 61, 72, 81, 93, 99, 112, 122, }); tspProblem.Coordinates = new DoubleMatrix(new double[,] { {48, 71}, {49, 71}, {50, 71}, {44, 70}, {45, 70}, {52, 70}, {53, 70}, {54, 70}, {41, 69}, {42, 69}, {55, 69}, {56, 69}, {40, 68}, {56, 68}, {57, 68}, {39, 67}, {57, 67}, {58, 67}, {59, 67}, {38, 66}, {59, 66}, {60, 66}, {37, 65}, {60, 65}, {36, 64}, {43, 64}, {35, 63}, {37, 63}, {41, 63}, {42, 63}, {43, 63}, {47, 63}, {61, 63}, {40, 62}, {41, 62}, {42, 62}, {43, 62}, {45, 62}, {46, 62}, {47, 62}, {62, 62}, {34, 61}, {38, 61}, {39, 61}, {42, 61}, {43, 61}, {44, 61}, {45, 61}, {46, 61}, {47, 61}, {52, 61}, {62, 61}, {63, 61}, {26, 60}, {38, 60}, {42, 60}, {43, 60}, {44, 60}, {46, 60}, {47, 60}, {63, 60}, {23, 59}, {24, 59}, {27, 59}, {29, 59}, {30, 59}, {31, 59}, {33, 59}, {42, 59}, {46, 59}, {47, 59}, {63, 59}, {21, 58}, {32, 58}, {33, 58}, {34, 58}, {35, 58}, {46, 58}, {47, 58}, {48, 58}, {53, 58}, {21, 57}, {35, 57}, {47, 57}, {48, 57}, {53, 57}, {36, 56}, {37, 56}, {46, 56}, {47, 56}, {48, 56}, {64, 56}, {65, 56}, {20, 55}, {38, 55}, {46, 55}, {47, 55}, {48, 55}, {52, 55}, {21, 54}, {40, 54}, {47, 54}, {48, 54}, {52, 54}, {65, 54}, {30, 53}, {41, 53}, {46, 53}, {47, 53}, {48, 53}, {52, 53}, {65, 53}, {21, 52}, {32, 52}, {33, 52}, {42, 52}, {51, 52}, {21, 51}, {33, 51}, {34, 51}, {43, 51}, {51, 51}, {21, 50}, {35, 50}, {44, 50}, {50, 50}, {66, 50}, {67, 50}, {21, 49}, {34, 49}, {36, 49}, {37, 49}, {46, 49}, {49, 49}, {67, 49}, {22, 48}, {36, 48}, {37, 48}, {46, 48}, {47, 48}, {22, 47}, {30, 47}, {34, 47}, {37, 47}, {38, 47}, {39, 47}, {47, 47}, {48, 47}, {67, 47}, {23, 46}, {28, 46}, {29, 46}, {30, 46}, {31, 46}, {32, 46}, {35, 46}, {37, 46}, {38, 46}, {39, 46}, {49, 46}, {67, 46}, {23, 45}, {28, 45}, {29, 45}, {31, 45}, {32, 45}, {40, 45}, {41, 45}, {49, 45}, {50, 45}, {68, 45}, {24, 44}, {29, 44}, {32, 44}, {41, 44}, {51, 44}, {68, 44}, {25, 43}, {30, 43}, {32, 43}, {42, 43}, {43, 43}, {51, 43}, {68, 43}, {69, 43}, {31, 42}, {32, 42}, {43, 42}, {52, 42}, {55, 42}, {26, 41}, {27, 41}, {31, 41}, {32, 41}, {33, 41}, {44, 41}, {45, 41}, {46, 41}, {47, 41}, {48, 41}, {49, 41}, {53, 41}, {25, 40}, {27, 40}, {32, 40}, {43, 40}, {44, 40}, {45, 40}, {46, 40}, {48, 40}, {49, 40}, {50, 40}, {51, 40}, {53, 40}, {56, 40}, {32, 39}, {33, 39}, {43, 39}, {50, 39}, {51, 39}, {54, 39}, {56, 39}, {69, 39}, {24, 38}, {32, 38}, {41, 38}, {42, 38}, {51, 38}, {52, 38}, {54, 38}, {57, 38}, {69, 38}, {31, 37}, {32, 37}, {40, 37}, {41, 37}, {42, 37}, {43, 37}, {44, 37}, {45, 37}, {46, 37}, {47, 37}, {48, 37}, {51, 37}, {52, 37}, {55, 37}, {57, 37}, {69, 37}, {24, 36}, {31, 36}, {32, 36}, {39, 36}, {40, 36}, {41, 36}, {42, 36}, {43, 36}, {45, 36}, {48, 36}, {49, 36}, {51, 36}, {53, 36}, {55, 36}, {58, 36}, {22, 35}, {23, 35}, {24, 35}, {25, 35}, {30, 35}, {31, 35}, {32, 35}, {39, 35}, {41, 35}, {49, 35}, {51, 35}, {55, 35}, {56, 35}, {58, 35}, {71, 35}, {20, 34}, {27, 34}, {30, 34}, {31, 34}, {51, 34}, {53, 34}, {57, 34}, {60, 34}, {18, 33}, {19, 33}, {29, 33}, {30, 33}, {31, 33}, {45, 33}, {46, 33}, {47, 33}, {52, 33}, {53, 33}, {55, 33}, {57, 33}, {58, 33}, {17, 32}, {30, 32}, {44, 32}, {47, 32}, {54, 32}, {57, 32}, {59, 32}, {61, 32}, {71, 32}, {72, 32}, {43, 31}, {47, 31}, {56, 31}, {58, 31}, {59, 31}, {61, 31}, {72, 31}, {74, 31}, {16, 30}, {43, 30}, {46, 30}, {47, 30}, {59, 30}, {63, 30}, {71, 30}, {75, 30}, {43, 29}, {46, 29}, {47, 29}, {59, 29}, {60, 29}, {75, 29}, {15, 28}, {43, 28}, {46, 28}, {61, 28}, {76, 28}, {15, 27}, {43, 27}, {44, 27}, {45, 27}, {46, 27}, {60, 27}, {62, 27}, {15, 26}, {43, 26}, {44, 26}, {46, 26}, {59, 26}, {60, 26}, {64, 26}, {77, 26}, {15, 25}, {58, 25}, {61, 25}, {77, 25}, {15, 24}, {53, 24}, {55, 24}, {61, 24}, {77, 24}, {62, 23}, {16, 22}, {61, 22}, {62, 22}, {15, 21}, {16, 21}, {52, 21}, {63, 21}, {77, 21}, {16, 20}, {17, 20}, {46, 20}, {47, 20}, {60, 20}, {62, 20}, {63, 20}, {65, 20}, {76, 20}, {15, 19}, {17, 19}, {18, 19}, {44, 19}, {45, 19}, {48, 19}, {53, 19}, {56, 19}, {60, 19}, {62, 19}, {67, 19}, {68, 19}, {76, 19}, {15, 18}, {18, 18}, {19, 18}, {20, 18}, {32, 18}, {33, 18}, {34, 18}, {41, 18}, {42, 18}, {43, 18}, {46, 18}, {48, 18}, {53, 18}, {59, 18}, {60, 18}, {69, 18}, {75, 18}, {16, 17}, {17, 17}, {20, 17}, {21, 17}, {22, 17}, {23, 17}, {24, 17}, {26, 17}, {28, 17}, {29, 17}, {30, 17}, {31, 17}, {32, 17}, {34, 17}, {35, 17}, {36, 17}, {37, 17}, {38, 17}, {39, 17}, {40, 17}, {44, 17}, {46, 17}, {48, 17}, {53, 17}, {56, 17}, {58, 17}, {75, 17}, {17, 16}, {18, 16}, {20, 16}, {24, 16}, {26, 16}, {27, 16}, {29, 16}, {33, 16}, {41, 16}, {42, 16}, {44, 16}, {47, 16}, {52, 16}, {57, 16}, {70, 16}, {73, 16}, {74, 16}, {17, 15}, {18, 15}, {20, 15}, {22, 15}, {24, 15}, {27, 15}, {29, 15}, {31, 15}, {33, 15}, {35, 15}, {36, 15}, {38, 15}, {39, 15}, {42, 15}, {45, 15}, {47, 15}, {52, 15}, {53, 15}, {55, 15}, {56, 15}, {70, 15}, {73, 15}, {17, 14}, {19, 14}, {21, 14}, {24, 14}, {26, 14}, {29, 14}, {31, 14}, {34, 14}, {37, 14}, {40, 14}, {42, 14}, {44, 14}, {46, 14}, {47, 14}, {53, 14}, {54, 14}, {55, 14}, {62, 14}, {70, 14}, {72, 14}, {17, 13}, {19, 13}, {21, 13}, {23, 13}, {25, 13}, {27, 13}, {30, 13}, {32, 13}, {34, 13}, {36, 13}, {38, 13}, {41, 13}, {43, 13}, {44, 13}, {45, 13}, {60, 13}, {70, 13}, {71, 13}, {18, 12}, {21, 12}, {23, 12}, {26, 12}, {28, 12}, {31, 12}, {34, 12}, {37, 12}, {39, 12}, {41, 12}, {42, 12}, {70, 12}, {18, 11}, {19, 11}, {20, 11}, {21, 11}, {24, 11}, {25, 11}, {27, 11}, {29, 11}, {31, 11}, {33, 11}, {35, 11}, {38, 11}, {41, 11}, {59, 11}, {26, 10}, {29, 10}, {32, 10}, {34, 10}, {36, 10}, {39, 10}, {40, 10}, {69, 10}, {21, 9}, {26, 9}, {28, 9}, {30, 9}, {32, 9}, {33, 9}, {35, 9}, {36, 9}, {37, 9}, {38, 9}, {39, 9}, {22, 8}, {27, 8}, {28, 8}, {29, 8}, {30, 8}, {31, 8}, {68, 8}, {23, 7}, {66, 7}, {24, 6}, {65, 6}, {25, 5}, {62, 5}, {63, 5}, {26, 4}, {55, 4}, {56, 4}, {57, 4}, {58, 4}, {59, 4}, {60, 4}, {61, 4}, {28, 3}, {53, 3}, {29, 2}, {50, 2}, {51, 2}, {52, 2}, {31, 1}, {32, 1}, {48, 1} }); tspProblem.BestKnownQuality = new DoubleValue(867); tspProblem.EvaluatorParameter.Value = new TSPRoundedEuclideanPathEvaluator(); tspProblem.SolutionCreatorParameter.Value = new RandomPermutationCreator(); tspProblem.UseDistanceMatrix.Value = true; tspProblem.Name = "Funny TSP"; tspProblem.Description = "Represents a symmetric Traveling Salesman Problem."; #endregion #region Algorithm Configuration vns.Name = "Variable Neighborhood Search - TSP"; vns.Description = "A variable neighborhood search algorithm which solves a funny TSP instance"; vns.Problem = tspProblem; var localImprovement = vns.LocalImprovementParameter.ValidValues .OfType() .Single(); // move generator has to be set first localImprovement.MoveGenerator = localImprovement.MoveGeneratorParameter.ValidValues .OfType() .Single(); localImprovement.MoveEvaluator = localImprovement.MoveEvaluatorParameter.ValidValues .OfType() .Single(); localImprovement.MoveMaker = localImprovement.MoveMakerParameter.ValidValues .OfType() .Single(); localImprovement.SampleSizeParameter.Value = new IntValue(500); vns.LocalImprovement = localImprovement; vns.LocalImprovementMaximumIterations = 150; vns.MaximumIterations = 25; vns.Seed = 0; vns.SetSeedRandomly = true; var shakingOperator = vns.ShakingOperatorParameter.ValidValues .OfType() .Single(); shakingOperator.Operators.SetItemCheckedState(shakingOperator.Operators .OfType() .Single(), false); shakingOperator.Operators.SetItemCheckedState(shakingOperator.Operators .OfType() .Single(), false); vns.ShakingOperator = shakingOperator; #endregion vns.Engine = new ParallelEngine(); return vns; } #endregion #endregion #region Gaussian Process Regression [TestMethod] public void CreateGaussianProcessRegressionSampleTest() { var vns = CreateGaussianProcessRegressionSample(); XmlGenerator.Serialize(vns, "../../GaussianProcessRegression.hl"); } [TestMethod] public void RunGaussianProcessRegressionSample() { var gpr = CreateGaussianProcessRegressionSample(); gpr.SetSeedRandomly = false; gpr.Seed = 1618551877; RunAlgorithm(gpr); Assert.AreEqual(-940.48768748097029, GetDoubleResult(gpr, "NegativeLogLikelihood")); Assert.AreEqual(0.99561947047986976, GetDoubleResult(gpr, "Training R²")); } private GaussianProcessRegression CreateGaussianProcessRegressionSample() { var gpr = new GaussianProcessRegression(); var provider = new VariousInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name.Contains("Spatial co-evolution")).Single(); var regProblem = new RegressionProblem(); regProblem.Load(provider.LoadData(instance)); #region Algorithm Configuration gpr.Name = "Gaussian Process Regression"; gpr.Description = "A Gaussian process regression algorithm applied to the spatial co-evolution benchmark problem."; gpr.Problem = regProblem; gpr.CovarianceFunction = new CovarianceSquaredExponentialIso(); gpr.MeanFunction = new MeanConst(); gpr.MinimizationIterations = 20; gpr.Seed = 0; gpr.SetSeedRandomly = true; #endregion gpr.Engine = new ParallelEngine(); return gpr; } #endregion #region Scatter Search #region VRP [TestMethod] public void CreateScatterSearchVRPSampleTest() { var ss = CreateScatterSearchVRPSample(); XmlGenerator.Serialize(ss, "../../SS_VRP.hl"); } [TestMethod] public void RunScatterSearchVRPSampleTest() { var ss = CreateScatterSearchVRPSample(); ss.SetSeedRandomly.Value = false; RunAlgorithm(ss); Assert.AreEqual(828.93686694283383, GetDoubleResult(ss, "BestQuality")); Assert.AreEqual(868.63623986983077, GetDoubleResult(ss, "CurrentAverageQuality")); Assert.AreEqual(1048.8333559209832, GetDoubleResult(ss, "CurrentWorstQuality")); Assert.AreEqual(262622, GetIntResult(ss, "EvaluatedSolutions")); } private ScatterSearch CreateScatterSearchVRPSample() { #region Problem Configuration var provider = new SolomonInstanceProvider(); var instance = provider.GetDataDescriptors().Single(x => x.Name == "C101"); VehicleRoutingProblem vrpProblem = new VehicleRoutingProblem(); vrpProblem.Load(provider.LoadData(instance)); #endregion #region Algorithm Configuration ScatterSearch ss = new ScatterSearch(); ss.Engine = new SequentialEngine(); ss.Name = "Scatter Search - VRP"; ss.Description = "A scatter search algorithm which solves the \"C101\" vehicle routing problem (imported from Solomon)"; ss.Problem = vrpProblem; var improver = ss.Problem.Operators.OfType().First(); improver.ImprovementAttemptsParameter.Value.Value = 15; improver.SampleSizeParameter.Value.Value = 10; ss.Improver = improver; var pathRelinker = ss.Problem.Operators.OfType().First(); pathRelinker.IterationsParameter.Value.Value = 25; ss.PathRelinker = pathRelinker; var similarityCalculator = ss.SimilarityCalculatorParameter.ValidValues.OfType().First(); ss.SimilarityCalculator = similarityCalculator; ss.MaximumIterations.Value = 2; ss.PopulationSize.Value = 20; ss.ReferenceSetSize.Value = 10; ss.Seed.Value = 0; return ss; #endregion } #endregion #endregion #region RAPGA #region Scheduling [TestMethod] public void CreateRAPGASchedulingSampleTest() { var ss = CreateRAPGASchedulingSample(); XmlGenerator.Serialize(ss, "../../RAPGA_JSSP.hl"); } [TestMethod] public void RunRAPGASchedulingSampleTest() { var rapga = CreateRAPGASchedulingSample(); rapga.SetSeedRandomly.Value = false; RunAlgorithm(rapga); Assert.AreEqual(982.00, GetDoubleResult(rapga, "BestQuality")); Assert.AreEqual(982.00, GetDoubleResult(rapga, "CurrentAverageQuality")); Assert.AreEqual(982.00, GetDoubleResult(rapga, "CurrentWorstQuality")); Assert.AreEqual(27100, GetIntResult(rapga, "EvaluatedSolutions")); } private RAPGA CreateRAPGASchedulingSample() { #region Problem Configuration JobShopSchedulingProblem problem = new JobShopSchedulingProblem(); #endregion #region Algorithm Configuration RAPGA rapga = new RAPGA(); rapga.Engine = new SequentialEngine(); rapga.Name = "RAPGA - Job Shop Scheduling"; rapga.Description = "A relevant alleles preserving genetic algorithm which solves a job shop scheduling problem"; rapga.Problem = problem; rapga.Mutator = rapga.MutatorParameter.ValidValues.OfType().First(); rapga.Seed.Value = 0; return rapga; #endregion } #endregion #endregion #region Helpers private void ConfigureEvolutionStrategyParameters(EvolutionStrategy es, int popSize, int children, int parentsPerChild, int maxGens, bool plusSelection) where R : ICrossover where M : IManipulator where SC : IStrategyParameterCreator where SR : IStrategyParameterCrossover where SM : IStrategyParameterManipulator { es.PopulationSize.Value = popSize; es.Children.Value = children; es.ParentsPerChild.Value = parentsPerChild; es.MaximumGenerations.Value = maxGens; es.PlusSelection.Value = false; es.Seed.Value = 0; es.SetSeedRandomly.Value = true; es.Recombinator = es.RecombinatorParameter.ValidValues .OfType() .Single(); es.Mutator = es.MutatorParameter.ValidValues .OfType() .Single(); es.StrategyParameterCreator = es.StrategyParameterCreatorParameter.ValidValues .OfType() .Single(); es.StrategyParameterCrossover = es.StrategyParameterCrossoverParameter.ValidValues .OfType() .Single(); es.StrategyParameterManipulator = es.StrategyParameterManipulatorParameter.ValidValues .OfType() .Single(); es.Engine = new ParallelEngine(); } private void ConfigureGeneticAlgorithmParameters(GeneticAlgorithm ga, int popSize, int elites, int maxGens, double mutationRate, int tournGroupSize = 0) where S : ISelector where C : ICrossover where M : IManipulator { ga.Elites.Value = elites; ga.MaximumGenerations.Value = maxGens; ga.MutationProbability.Value = mutationRate; ga.PopulationSize.Value = popSize; ga.Seed.Value = 0; ga.SetSeedRandomly.Value = true; ga.Selector = ga.SelectorParameter.ValidValues .OfType() .First(); ga.Crossover = ga.CrossoverParameter.ValidValues .OfType() .First(); ga.Mutator = ga.MutatorParameter.ValidValues .OfType() .First(); var tSelector = ga.Selector as TournamentSelector; if (tSelector != null) { tSelector.GroupSizeParameter.Value.Value = tournGroupSize; } ga.Engine = new ParallelEngine(); } private void ConfigureIslandGeneticAlgorithmParameters(IslandGeneticAlgorithm ga, int popSize, int elites, int maxGens, double mutationRate, int numberOfIslands, int migrationInterval, double migrationRate) where S : ISelector where C : ICrossover where M : IManipulator where Mi : IMigrator where MiS : ISelector where MiR : IReplacer { ga.Elites.Value = elites; ga.MaximumGenerations.Value = maxGens; ga.MutationProbability.Value = mutationRate; ga.PopulationSize.Value = popSize; ga.NumberOfIslands.Value = numberOfIslands; ga.MigrationInterval.Value = migrationInterval; ga.MigrationRate.Value = migrationRate; ga.Seed.Value = 0; ga.SetSeedRandomly.Value = true; ga.Selector = ga.SelectorParameter.ValidValues .OfType() .Single(); ga.Crossover = ga.CrossoverParameter.ValidValues .OfType() .Single(); ga.Mutator = ga.MutatorParameter.ValidValues .OfType() .Single(); ga.Migrator = ga.MigratorParameter.ValidValues .OfType() .Single(); ga.EmigrantsSelector = ga.EmigrantsSelectorParameter.ValidValues .OfType() .Single(); ga.ImmigrationReplacer = ga.ImmigrationReplacerParameter.ValidValues .OfType() .Single(); ga.Engine = new ParallelEngine(); } private void RunAlgorithm(IAlgorithm a) { var trigger = new EventWaitHandle(false, EventResetMode.ManualReset); Exception ex = null; a.Stopped += (src, e) => { trigger.Set(); }; a.ExceptionOccurred += (src, e) => { ex = e.Value; trigger.Set(); }; a.Prepare(); a.Start(); trigger.WaitOne(); Assert.AreEqual(ex, null); } private double GetDoubleResult(IAlgorithm a, string resultName) { return ((DoubleValue)a.Results[resultName].Value).Value; } private int GetIntResult(IAlgorithm a, string resultName) { return ((IntValue)a.Results[resultName].Value).Value; } #endregion } }