#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.IO; using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence.Default.Xml; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Problems.Instances.DataAnalysis; using HeuristicLab.Selection; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Tests { [TestClass] public class GPMultiplexerSampleTest { private const string samplesDirectory = SamplesUtils.Directory; [ClassInitialize] public static void MyClassInitialize(TestContext testContext) { if (!Directory.Exists(samplesDirectory)) Directory.CreateDirectory(samplesDirectory); } [TestMethod] [TestCategory("Samples.Create")] [TestProperty("Time", "medium")] public void CreateGpMultiplexerSampleTest() { var ga = CreateGpMultiplexerSample(); var path = Path.Combine(samplesDirectory, "GP_Multiplexer.hl"); XmlGenerator.Serialize(ga, path); } [TestMethod] [TestCategory("Samples.Execute")] [TestProperty("Time", "long")] public void RunGpMultiplexerSampleTest() { var osga = CreateGpMultiplexerSample(); osga.SetSeedRandomly.Value = false; SamplesUtils.RunAlgorithm(osga); Assert.AreEqual(0.125, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8); Assert.AreEqual(0.237275390625, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8); Assert.AreEqual(1.181640625, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8); Assert.AreEqual(105500, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions")); } public static OffspringSelectionGeneticAlgorithm CreateGpMultiplexerSample() { var instanceProvider = new RegressionCSVInstanceProvider(); var regressionImportType = new RegressionImportType(); regressionImportType.TargetVariable = "output"; regressionImportType.TrainingPercentage = 100; var dataAnalysisCSVFormat = new DataAnalysisCSVFormat(); dataAnalysisCSVFormat.Separator = ','; dataAnalysisCSVFormat.VariableNamesAvailable = true; var problemData = instanceProvider.ImportData(@"Test Resources\Multiplexer11.csv", regressionImportType, dataAnalysisCSVFormat); problemData.Name = "11-Multiplexer"; var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.Name = "11-Multiplexer Problem"; problem.ProblemData = problemData; problem.MaximumSymbolicExpressionTreeLength.Value = 50; problem.MaximumSymbolicExpressionTreeDepth.Value = 50; problem.EvaluatorParameter.Value = new SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(); problem.ApplyLinearScaling.Value = false; var grammar = new FullFunctionalExpressionGrammar(); problem.SymbolicExpressionTreeGrammar = grammar; foreach (var symbol in grammar.Symbols) { if (symbol is ProgramRootSymbol) symbol.Enabled = true; else if (symbol is StartSymbol) symbol.Enabled = true; else if (symbol is IfThenElse) symbol.Enabled = true; else if (symbol is And) symbol.Enabled = true; else if (symbol is Or) symbol.Enabled = true; else if (symbol is Xor) symbol.Enabled = true; else if (symbol.GetType() == typeof(Variable)) { //necessary as there are multiple classes derived from Variable (e.g., VariableCondition) symbol.Enabled = true; var variableSymbol = (Variable)symbol; variableSymbol.MultiplicativeWeightManipulatorSigma = 0.0; variableSymbol.WeightManipulatorSigma = 0.0; variableSymbol.WeightSigma = 0.0; } else symbol.Enabled = false; } var osga = new OffspringSelectionGeneticAlgorithm(); osga.Name = "Genetic Programming - Multiplexer 11 problem"; osga.Description = "A genetic programming algorithm that solves the 11-bit multiplexer problem."; osga.Problem = problem; SamplesUtils.ConfigureOsGeneticAlgorithmParameters (osga, popSize: 100, elites: 1, maxGens: 50, mutationRate: 0.25); osga.MaximumSelectionPressure.Value = 200; return osga; } } }