#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Threading; using System.Threading.Tasks; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Common; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.Xml; using HeuristicLab.Problems.TestFunctions; using HeuristicLab.SequentialEngine; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab_33.Tests { [TestClass] public class CollectObjectGraphTest { private TestContext testContextInstance; public TestContext TestContext { get { return testContextInstance; } set { testContextInstance = value; } } [TestMethod] [DeploymentItem(@"HeuristicLab-3.3/Resources/GA_SymbReg.hl")] public void CollectGASample() { GeneticAlgorithm ga = (GeneticAlgorithm)XmlParser.Deserialize("GA_SymbReg.hl"); Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < 1; i++) ga.GetObjectGraphObjects().Count(); watch.Stop(); var objects = ga.GetObjectGraphObjects().ToList(); TestContext.WriteLine("Time elapsed {0}", watch.Elapsed); TestContext.WriteLine("Objects discovered: {0}", objects.Count()); TestContext.WriteLine("HL objects discovered: {0}", objects.Count(o => o.GetType().Namespace.StartsWith("HeuristicLab"))); TestContext.WriteLine(""); Dictionary> objs = new Dictionary>(); foreach (object o in objects) { if (!objs.ContainsKey(o.GetType())) objs.Add(o.GetType(), new List()); objs[o.GetType()].Add(o); } foreach (string s in objects.Select(o => o.GetType().Namespace).Distinct().OrderBy(s => s)) { TestContext.WriteLine("{0}: {1}", s, objects.Count(o => o.GetType().Namespace == s)); } TestContext.WriteLine(""); TestContext.WriteLine("Analysis of contained objects per name"); foreach (var pair in objs.OrderBy(x => x.Key.ToString())) { TestContext.WriteLine("{0}: {1}", pair.Key, pair.Value.Count); } TestContext.WriteLine(""); TestContext.WriteLine("Analysis of contained objects"); foreach (var pair in from o in objs orderby o.Value.Count descending select o) { TestContext.WriteLine("{0}: {1}", pair.Key, pair.Value.Count); } TestContext.WriteLine(""); } /// /// Tests if performance of multiple executions of a GA stays constant (as discussed in #1424) /// Tests if object collection works after multiple executions of a GA /// (for example the traversal of `ThreadLocal` objects in CollectObjectGraphObjects /// causes a StackOverflow occurs after some executions) /// [TestMethod] public void AlgorithmExecutions() { var algs = new List(); Stopwatch sw = new Stopwatch(); for (int i = 0; i < 100; i++) { GeneticAlgorithm ga = new GeneticAlgorithm(); ga.PopulationSize.Value = 5; ga.MaximumGenerations.Value = 5; ga.Engine = new SequentialEngine(); ga.Problem = new SingleObjectiveTestFunctionProblem(); sw.Start(); algs.Add(ga); var cancellationTokenSource = new CancellationTokenSource(); ga.StartSync(cancellationTokenSource.Token); sw.Stop(); TestContext.WriteLine("{0}: {1} ", i, sw.Elapsed); sw.Reset(); } } /// /// Test the execution of many algorithms in parallel /// [TestMethod] public void ParallelAlgorithmExecutions() { int n = 60; var tasks = new Task[n]; TestContext.WriteLine("creating tasks..."); for (int i = 0; i < n; i++) { tasks[i] = new Task((iobj) => { int locali = (int)iobj; GeneticAlgorithm ga = new GeneticAlgorithm(); ga.Name = "Alg " + locali; ga.PopulationSize.Value = 5; ga.MaximumGenerations.Value = 5; ga.Engine = new SequentialEngine(); ga.Problem = new SingleObjectiveTestFunctionProblem(); ga.Prepare(true); Console.WriteLine("{0}; Objects before execution: {1}", ga.Name, ga.GetObjectGraphObjects().Count()); var sw = new Stopwatch(); sw.Start(); ga.StartSync(new CancellationToken()); sw.Stop(); Console.WriteLine("{0}; Objects after execution: {1}", ga.Name, ga.GetObjectGraphObjects().Count()); Console.WriteLine("{0}; ExecutionTime: {1} ", ga.Name, sw.Elapsed); }, i); } TestContext.WriteLine("starting tasks..."); for (int i = 0; i < n; i++) { tasks[i].Start(); } TestContext.WriteLine("waiting for tasks to finish..."); Task.WaitAll(tasks); } } }