Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SupportVectorEvaluator.cs @ 3410

Last change on this file since 3410 was 2440, checked in by gkronber, 15 years ago

Fixed #784 (ProblemInjector should be changed to read variable names instead of indexes for input and target variables)

File size: 4.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29using SVM;
30
31namespace HeuristicLab.SupportVectorMachines {
32  public class SupportVectorEvaluator : OperatorBase {
33
34    public SupportVectorEvaluator()
35      : base() {
36      //Dataset infos
37      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
38      AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
39      AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
40      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal allowed time offset for input variables", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal allowed time offset for input variables", typeof(IntData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("SVMModel", "Represent the model learned by the SVM", typeof(SVMModel), VariableKind.In));
45      AddVariableInfo(new VariableInfo("Values", "Target vs predicted values", typeof(DoubleMatrixData), VariableKind.New | VariableKind.Out));
46    }
47
48
49    public override IOperation Apply(IScope scope) {
50      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
51      ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
52      var inputVariableNames = from x in inputVariables
53                               select ((StringData)x).Data;
54      string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
55      int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
56      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
57      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
58      IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
59      int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
60      IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
61      int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
62      SVMModel modelData = GetVariableValue<SVMModel>("SVMModel", scope, true);
63
64      SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, targetVariableIndex, inputVariableNames, start, end, minTimeOffset, maxTimeOffset);
65      SVM.Problem scaledProblem = modelData.RangeTransform.Scale(problem);
66
67      double[,] values = new double[scaledProblem.Count, 2];
68      for (int i = 0; i < scaledProblem.Count; i++) {
69        values[i, 0] = dataset.GetValue(start + i, targetVariableIndex);
70        values[i, 1] = SVM.Prediction.Predict(modelData.Model, scaledProblem.X[i]);
71      }
72
73      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Values"), new DoubleMatrixData(values)));
74      return null;
75    }
76  }
77}
Note: See TracBrowser for help on using the repository browser.