#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Linq;
using HeuristicLab.Core;
using System.Globalization;
using System.IO;
using HeuristicLab.Modeling;
using SVM;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.SupportVectorMachines {
public class Predictor : PredictorBase {
private SVMModel svmModel;
public SVMModel Model {
get { return svmModel; }
}
private List variableNames;
private string targetVariable;
private int minTimeOffset;
public int MinTimeOffset {
get { return minTimeOffset; }
}
private int maxTimeOffset;
public int MaxTimeOffset {
get { return maxTimeOffset; }
}
// for persistence
public Predictor() : base() { }
public Predictor(SVMModel model, string targetVariable, IEnumerable variableNames) :
this(model, targetVariable, variableNames, 0, 0) {
}
public Predictor(SVMModel model, string targetVariable, IEnumerable variableNames, int minTimeOffset, int maxTimeOffset)
: this() {
this.svmModel = model;
this.targetVariable = targetVariable;
this.minTimeOffset = minTimeOffset;
this.maxTimeOffset = maxTimeOffset;
this.variableNames = new List(variableNames);
}
public override double[] Predict(Dataset input, int start, int end) {
if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end");
if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end");
RangeTransform transform = svmModel.RangeTransform;
Model model = svmModel.Model;
Problem p = SVMHelper.CreateSVMProblem(input, input.GetVariableIndex(targetVariable), variableNames,
start, end, minTimeOffset, maxTimeOffset);
Problem scaledProblem = transform.Scale(p);
int targetVariableIndex = input.GetVariableIndex(targetVariable);
int rows = end - start;
double[] result = new double[rows];
int problemRow = 0;
for (int resultRow = 0; resultRow < rows; resultRow++) {
if (double.IsNaN(input.GetValue(resultRow, targetVariableIndex)))
result[resultRow] = UpperPredictionLimit;
else if (resultRow + maxTimeOffset < 0) {
result[resultRow] = UpperPredictionLimit;
problemRow++;
} else {
result[resultRow] = Math.Max(Math.Min(SVM.Prediction.Predict(model, scaledProblem.X[problemRow++]), UpperPredictionLimit), LowerPredictionLimit);
}
}
return result;
}
public override IEnumerable GetInputVariables() {
return variableNames;
}
public override IView CreateView() {
return new PredictorView(this);
}
public override object Clone(IDictionary clonedObjects) {
Predictor clone = (Predictor)base.Clone(clonedObjects);
clone.svmModel = (SVMModel)Auxiliary.Clone(svmModel, clonedObjects);
clone.targetVariable = targetVariable;
clone.variableNames = new List(variableNames);
clone.minTimeOffset = minTimeOffset;
clone.maxTimeOffset = maxTimeOffset;
return clone;
}
public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary persistedObjects) {
XmlNode node = base.GetXmlNode(name, document, persistedObjects);
XmlAttribute targetVarAttr = document.CreateAttribute("TargetVariable");
targetVarAttr.Value = targetVariable;
node.Attributes.Append(targetVarAttr);
XmlAttribute minTimeOffsetAttr = document.CreateAttribute("MinTimeOffset");
XmlAttribute maxTimeOffsetAttr = document.CreateAttribute("MaxTimeOffset");
minTimeOffsetAttr.Value = XmlConvert.ToString(minTimeOffset);
maxTimeOffsetAttr.Value = XmlConvert.ToString(maxTimeOffset);
node.Attributes.Append(minTimeOffsetAttr);
node.Attributes.Append(maxTimeOffsetAttr);
node.AppendChild(PersistenceManager.Persist(svmModel, document, persistedObjects));
XmlNode variablesNode = document.CreateElement("Variables");
foreach (var variableName in variableNames) {
XmlNode variableNameNode = document.CreateElement("Variable");
XmlAttribute nameAttr = document.CreateAttribute("Name");
nameAttr.Value = variableName;
variableNameNode.Attributes.Append(nameAttr);
variablesNode.AppendChild(variableNameNode);
}
node.AppendChild(variablesNode);
return node;
}
public override void Populate(XmlNode node, IDictionary restoredObjects) {
base.Populate(node, restoredObjects);
targetVariable = node.Attributes["TargetVariable"].Value;
svmModel = (SVMModel)PersistenceManager.Restore(node.ChildNodes[0], restoredObjects);
if (node.Attributes["MinTimeOffset"] != null) minTimeOffset = XmlConvert.ToInt32(node.Attributes["MinTimeOffset"].Value);
if (node.Attributes["MaxTimeOffset"] != null) maxTimeOffset = XmlConvert.ToInt32(node.Attributes["MaxTimeOffset"].Value);
variableNames = new List();
XmlNode variablesNode = node.ChildNodes[1];
foreach (XmlNode variableNameNode in variablesNode.ChildNodes) {
variableNames.Add(variableNameNode.Attributes["Name"].Value);
}
}
public static void Export(Predictor p, Stream s) {
StreamWriter writer = new StreamWriter(s);
writer.Write("Targetvariable: "); writer.WriteLine(p.targetVariable);
writer.Write("LowerPredictionLimit: "); writer.WriteLine(p.LowerPredictionLimit.ToString("r", CultureInfo.InvariantCulture.NumberFormat));
writer.Write("UpperPredictionLimit: "); writer.WriteLine(p.UpperPredictionLimit.ToString("r", CultureInfo.InvariantCulture.NumberFormat));
writer.Write("MaxTimeOffset: "); writer.WriteLine(p.MaxTimeOffset.ToString());
writer.Write("MinTimeOffset: "); writer.WriteLine(p.MinTimeOffset.ToString());
writer.Write("InputVariables :");
writer.Write(p.GetInputVariables().First());
foreach (string variable in p.GetInputVariables().Skip(1)) {
writer.Write("; "); writer.Write(variable);
}
writer.WriteLine();
writer.Flush();
using (MemoryStream memStream = new MemoryStream()) {
SVMModel.Export(p.Model, memStream);
memStream.WriteTo(s);
}
}
public static Predictor Import(TextReader reader) {
string[] targetVariableLine = reader.ReadLine().Split(':');
string[] lowerPredictionLimitLine = reader.ReadLine().Split(':');
string[] upperPredictionLimitLine = reader.ReadLine().Split(':');
string[] maxTimeOffsetLine = reader.ReadLine().Split(':');
string[] minTimeOffsetLine = reader.ReadLine().Split(':');
string[] inputVariableLine = reader.ReadLine().Split(':', ';');
string targetVariable = targetVariableLine[1].Trim();
double lowerPredictionLimit = double.Parse(lowerPredictionLimitLine[1], CultureInfo.InvariantCulture.NumberFormat);
double upperPredictionLimit = double.Parse(upperPredictionLimitLine[1], CultureInfo.InvariantCulture.NumberFormat);
int maxTimeOffset = int.Parse(maxTimeOffsetLine[1]);
int minTimeOffset = int.Parse(minTimeOffsetLine[1]);
List variableNames = new List();
foreach (string inputVariable in inputVariableLine.Skip(1)) {
variableNames.Add(inputVariable.Trim());
}
SVMModel model = SVMModel.Import(reader);
Predictor p = new Predictor(model, targetVariable, variableNames, minTimeOffset, maxTimeOffset);
p.UpperPredictionLimit = upperPredictionLimit;
p.LowerPredictionLimit = lowerPredictionLimit;
return p;
}
}
}