#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using HeuristicLab.Core; using HeuristicLab.Constraints; using System.Diagnostics; using HeuristicLab.Data; using System.Linq; using HeuristicLab.Random; using HeuristicLab.Operators; using HeuristicLab.Selection; using HeuristicLab.Functions; using System.Collections; namespace HeuristicLab.StructureIdentification { internal class TreeGardener { private IRandom random; private GPOperatorLibrary funLibrary; private List functions; private List terminals; internal IList Terminals { get { return terminals.AsReadOnly(); } } private List allFunctions; internal IList AllFunctions { get { return allFunctions.AsReadOnly(); } } internal TreeGardener(IRandom random, GPOperatorLibrary funLibrary) { this.random = random; this.funLibrary = funLibrary; this.allFunctions = new List(); terminals = new List(); functions = new List(); // init functions and terminals based on constraints foreach (IFunction fun in funLibrary.Group.Operators) { int maxA, minA; GetMinMaxArity(fun, out minA, out maxA); if (maxA == 0) { terminals.Add(fun); } else { functions.Add(fun); } } allFunctions.AddRange(functions); allFunctions.AddRange(terminals); } #region random initialization internal IFunctionTree CreateRandomTree(ICollection allowedFunctions, int maxTreeSize, int maxTreeHeight) { // default is non-balanced trees return CreateRandomTree(allowedFunctions, maxTreeSize, maxTreeHeight, false); } internal IFunctionTree CreateRandomTree(ICollection allowedFunctions, int maxTreeSize, int maxTreeHeight, bool balanceTrees) { int minTreeHeight = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data).Min(); if (minTreeHeight > maxTreeHeight) maxTreeHeight = minTreeHeight; int minTreeSize = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data).Min(); if (minTreeSize > maxTreeSize) maxTreeSize = minTreeSize; int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1); int treeSize = random.Next(minTreeSize, maxTreeSize + 1); IFunction[] possibleFunctions = allowedFunctions.Where(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data <= treeHeight && ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data <= treeSize).ToArray(); IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)]; return CreateRandomTree(selectedFunction, treeSize, treeHeight, balanceTrees); } internal IFunctionTree CreateRandomTree(int maxTreeSize, int maxTreeHeight, bool balanceTrees) { if (balanceTrees) { if (maxTreeHeight == 1 || maxTreeSize==1) { IFunction selectedTerminal = terminals[random.Next(terminals.Count())]; return new FunctionTree(selectedTerminal); } else { IFunction[] possibleFunctions = functions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight && GetMinimalTreeSize(f) <= maxTreeSize).ToArray(); IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)]; FunctionTree root = new FunctionTree(selectedFunction); MakeBalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1); return root; } } else { IFunction[] possibleFunctions = allFunctions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight && GetMinimalTreeSize(f) <= maxTreeSize).ToArray(); IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)]; FunctionTree root = new FunctionTree(selectedFunction); MakeUnbalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1); return root; } } internal IFunctionTree CreateRandomTree(IFunction rootFunction, int maxTreeSize, int maxTreeHeight, bool balanceTrees) { IFunctionTree root = new FunctionTree(rootFunction); if (balanceTrees) { MakeBalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1); } else { MakeUnbalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1); } if (GetTreeSize(root) > maxTreeSize || GetTreeHeight(root) > maxTreeHeight) { throw new InvalidProgramException(); } return root; } private void MakeUnbalancedTree(IFunctionTree parent, int maxTreeSize, int maxTreeHeight) { if (maxTreeHeight == 0 || maxTreeSize == 0) return; int minArity; int maxArity; GetMinMaxArity(parent.Function, out minArity, out maxArity); if (maxArity >= maxTreeSize) { maxArity = maxTreeSize; } int actualArity = random.Next(minArity, maxArity + 1); if (actualArity > 0) { int maxSubTreeSize = maxTreeSize / actualArity; for (int i = 0; i < actualArity; i++) { IFunction[] possibleFunctions = GetAllowedSubFunctions(parent.Function, i).Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight && GetMinimalTreeSize(f) <= maxSubTreeSize).ToArray(); IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)]; FunctionTree newSubTree = new FunctionTree(selectedFunction); MakeUnbalancedTree(newSubTree, maxSubTreeSize - 1, maxTreeHeight - 1); parent.InsertSubTree(i, newSubTree); } } } // NOTE: this method doesn't build fully balanced trees because we have constraints on the // types of possible sub-functions which can indirectly impose a limit for the depth of a given sub-tree private void MakeBalancedTree(IFunctionTree parent, int maxTreeSize, int maxTreeHeight) { if (maxTreeHeight == 0 || maxTreeSize == 0) return; // should never happen anyway int minArity; int maxArity; GetMinMaxArity(parent.Function, out minArity, out maxArity); if (maxArity >= maxTreeSize) { maxArity = maxTreeSize; } int actualArity = random.Next(minArity, maxArity + 1); if (actualArity > 0) { int maxSubTreeSize = maxTreeSize / actualArity; for (int i = 0; i < actualArity; i++) { if (maxTreeHeight == 1 || maxSubTreeSize == 1) { IFunction[] possibleTerminals = GetAllowedSubFunctions(parent.Function, i).Where( f => GetMinimalTreeHeight(f) <= maxTreeHeight && GetMinimalTreeSize(f) <= maxSubTreeSize && IsTerminal(f)).ToArray(); IFunction selectedTerminal = possibleTerminals[random.Next(possibleTerminals.Length)]; IFunctionTree newTree = new FunctionTree(selectedTerminal); parent.InsertSubTree(i, newTree); } else { IFunction[] possibleFunctions = GetAllowedSubFunctions(parent.Function, i).Where( f => GetMinimalTreeHeight(f) <= maxTreeHeight && GetMinimalTreeSize(f) <= maxSubTreeSize && !IsTerminal(f)).ToArray(); IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)]; FunctionTree newTree = new FunctionTree(selectedFunction); parent.InsertSubTree(i, newTree); MakeBalancedTree(newTree, maxSubTreeSize - 1, maxTreeHeight - 1); } } } } internal CompositeOperation CreateInitializationOperation(ICollection trees, IScope scope) { // needed for the parameter shaking operation CompositeOperation initializationOperation = new CompositeOperation(); Scope tempScope = new Scope("Temp. initialization scope"); var parametricTrees = trees.Where(t => t.Function.GetVariable(GPOperatorLibrary.INITIALIZATION) != null); foreach (IFunctionTree tree in parametricTrees) { // enqueue an initialization operation for each operator with local variables IOperator initialization = (IOperator)tree.Function.GetVariable(GPOperatorLibrary.INITIALIZATION).Value; Scope initScope = new Scope(); // copy the local variables into a temporary scope used for initialization foreach (IVariable variable in tree.LocalVariables) { initScope.AddVariable(variable); } tempScope.AddSubScope(initScope); initializationOperation.AddOperation(new AtomicOperation(initialization, initScope)); } Scope backupScope = new Scope("backup"); foreach (Scope subScope in scope.SubScopes) { backupScope.AddSubScope(subScope); } scope.AddSubScope(tempScope); scope.AddSubScope(backupScope); // add an operation to remove the temporary scopes initializationOperation.AddOperation(new AtomicOperation(new RightReducer(), scope)); return initializationOperation; } #endregion #region tree information gathering internal int GetTreeSize(IFunctionTree tree) { return 1 + tree.SubTrees.Sum(f => GetTreeSize(f)); } internal int GetTreeHeight(IFunctionTree tree) { if (tree.SubTrees.Count == 0) return 1; return 1 + tree.SubTrees.Max(f => GetTreeHeight(f)); } internal IFunctionTree GetRandomParentNode(IFunctionTree tree) { List parentNodes = new List(); // add null for the parent of the root node parentNodes.Add(null); TreeForEach(tree, delegate(IFunctionTree possibleParentNode) { if (possibleParentNode.SubTrees.Count > 0) { parentNodes.Add(possibleParentNode); } }); return parentNodes[random.Next(parentNodes.Count)]; } internal IList GetAllowedSubFunctions(IFunction f, int index) { if (f == null) { return allFunctions; } else { ItemList slotList = (ItemList)f.GetVariable(GPOperatorLibrary.ALLOWED_SUBOPERATORS).Value; List result = new List(); foreach(IFunction function in (ItemList)slotList[index]) { result.Add(function); } return result; } } internal void GetMinMaxArity(IFunction f, out int minArity, out int maxArity) { foreach (IConstraint constraint in f.Constraints) { NumberOfSubOperatorsConstraint theConstraint = constraint as NumberOfSubOperatorsConstraint; if (theConstraint != null) { minArity = theConstraint.MinOperators.Data; maxArity = theConstraint.MaxOperators.Data; return; } } // the default arity is 2 minArity = 2; maxArity = 2; } internal bool IsTerminal(IFunction f) { int minArity; int maxArity; GetMinMaxArity(f, out minArity, out maxArity); return minArity == 0 && maxArity == 0; } internal IList GetAllowedParents(IFunction child, int childIndex) { List parents = new List(); foreach (IFunction function in functions) { ICollection allowedSubFunctions = GetAllowedSubFunctions(function, childIndex); if (allowedSubFunctions.Contains(child)) { parents.Add(function); } } return parents; } internal ICollection GetAllSubTrees(IFunctionTree root) { List allTrees = new List(); TreeForEach(root, t => { allTrees.Add(t); }); return allTrees; } /// /// returns the height level of branch in the tree /// if the branch == tree => 1 /// if branch is in the sub-trees of tree => 2 /// ... /// if branch is not found => -1 /// /// root of the function tree to process /// branch that is searched in the tree /// internal int GetBranchLevel(IFunctionTree tree, IFunctionTree branch) { return GetBranchLevelHelper(tree, branch, 1); } // 'tail-recursive' helper private int GetBranchLevelHelper(IFunctionTree tree, IFunctionTree branch, int level) { if (branch == tree) return level; foreach (IFunctionTree subTree in tree.SubTrees) { int result = GetBranchLevelHelper(subTree, branch, level + 1); if (result != -1) return result; } return -1; } internal bool IsValidTree(IFunctionTree tree) { foreach(IConstraint constraint in tree.Function.Constraints) { if(constraint is NumberOfSubOperatorsConstraint) { int max = ((NumberOfSubOperatorsConstraint)constraint).MaxOperators.Data; int min = ((NumberOfSubOperatorsConstraint)constraint).MinOperators.Data; if(tree.SubTrees.Count < min || tree.SubTrees.Count > max) return false; } } foreach(IFunctionTree subTree in tree.SubTrees) { if(!IsValidTree(subTree)) return false; } return true; } // returns a random branch from the specified level in the tree internal IFunctionTree GetRandomBranch(IFunctionTree tree, int level) { if (level == 0) return tree; List branches = GetBranchesAtLevel(tree, level); return branches[random.Next(branches.Count)]; } #endregion #region private utility methods private int GetMinimalTreeHeight(IOperator op) { return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data; } private int GetMinimalTreeSize(IOperator op) { return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data; } private void TreeForEach(IFunctionTree tree, Action action) { action(tree); foreach (IFunctionTree subTree in tree.SubTrees) { TreeForEach(subTree, action); } } private List GetBranchesAtLevel(IFunctionTree tree, int level) { if (level == 1) return new List(tree.SubTrees); List branches = new List(); foreach (IFunctionTree subTree in tree.SubTrees) { branches.AddRange(GetBranchesAtLevel(subTree, level - 1)); } return branches; } #endregion internal ICollection GetPossibleParents(List list) { List result = new List(); foreach (IFunction f in functions) { if (IsPossibleParent(f, list)) { result.Add(f); } } return result; } private bool IsPossibleParent(IFunction f, List children) { int minArity; int maxArity; GetMinMaxArity(f, out minArity, out maxArity); // note: we can't assume that the operators in the children list have different types! // when the maxArity of this function is smaller than the list of operators that // should be included as sub-operators then it can't be a parent if (maxArity < children.Count()) { return false; } int nSlots = Math.Max(minArity, children.Count); SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser(); analyzer.AllPossibleOperators = children.Cast().ToArray(); List> slotSets = new List>(); // we iterate through all slots for sub-trees and calculate the set of // allowed functions for this slot. // we only count those slots that can hold at least one of the children that we should combine for (int slot = 0; slot < nSlots; slot++) { HashSet functionSet = new HashSet(analyzer.GetAllowedOperators(f, slot).Cast()); if (functionSet.Count() > 0) { slotSets.Add(functionSet); } } // ok at the end of this operation we know how many slots of the parent can actually // hold one of our children. // if the number of slots is smaller than the number of children we can be sure that // we can never combine all children as sub-trees of the function and thus the function // can't be a parent. if (slotSets.Count() < children.Count()) { return false; } // finally we sort the sets by size and beginning from the first set select one // function for the slot and thus remove it as possible sub-tree from the remaining sets. // when we can successfully assign all available children to a slot the function is a valid parent // when only a subset of all children can be assigned to slots the function is no valid parent slotSets.Sort((p, q) => p.Count() - q.Count()); int assignments = 0; for (int i = 0; i < slotSets.Count() - 1; i++) { if (slotSets[i].Count > 0) { IFunction selected = slotSets[i].ElementAt(0); assignments++; for (int j = i + 1; j < slotSets.Count(); j++) { slotSets[j].Remove(selected); } } } // sanity check if (assignments > children.Count) throw new InvalidProgramException(); return assignments == children.Count - 1; } } }