1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Constraints;
|
---|
27 | using System.Diagnostics;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using System.Linq;
|
---|
30 | using HeuristicLab.Random;
|
---|
31 | using HeuristicLab.Operators;
|
---|
32 | using HeuristicLab.Selection;
|
---|
33 | using HeuristicLab.Functions;
|
---|
34 | using System.Collections;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.StructureIdentification {
|
---|
37 | internal class TreeGardener {
|
---|
38 | private IRandom random;
|
---|
39 | private GPOperatorLibrary funLibrary;
|
---|
40 | private List<IFunction> functions;
|
---|
41 |
|
---|
42 | private List<IFunction> terminals;
|
---|
43 | internal IList<IFunction> Terminals {
|
---|
44 | get { return terminals; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | private List<IFunction> allFunctions;
|
---|
48 | internal IList<IFunction> AllFunctions {
|
---|
49 | get { return allFunctions; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | #region constructors
|
---|
53 | internal TreeGardener(IRandom random, GPOperatorLibrary funLibrary) {
|
---|
54 | this.random = random;
|
---|
55 | this.funLibrary = funLibrary;
|
---|
56 | this.allFunctions = new List<IFunction>();
|
---|
57 | terminals = new List<IFunction>();
|
---|
58 | functions = new List<IFunction>();
|
---|
59 | // init functions and terminals based on constraints
|
---|
60 | foreach(IFunction fun in funLibrary.Group.Operators) {
|
---|
61 | int maxA, minA;
|
---|
62 | GetMinMaxArity(fun, out minA, out maxA);
|
---|
63 | if(maxA == 0) {
|
---|
64 | terminals.Add(fun);
|
---|
65 | allFunctions.Add(fun);
|
---|
66 | } else {
|
---|
67 | functions.Add(fun);
|
---|
68 | allFunctions.Add(fun);
|
---|
69 | }
|
---|
70 | }
|
---|
71 | }
|
---|
72 | #endregion
|
---|
73 |
|
---|
74 | #region random initialization
|
---|
75 | /// <summary>
|
---|
76 | /// Creates a random balanced tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
|
---|
77 | /// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
|
---|
78 | /// </summary>
|
---|
79 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
80 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
81 | /// <returns></returns>
|
---|
82 | internal IFunctionTree CreateBalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
|
---|
83 | IFunction rootFunction = GetRandomRoot(maxTreeSize, maxTreeHeight);
|
---|
84 | IFunctionTree tree = MakeBalancedTree(rootFunction, maxTreeHeight - 1);
|
---|
85 | return tree;
|
---|
86 | }
|
---|
87 |
|
---|
88 | /// <summary>
|
---|
89 | /// Creates a random (unbalanced) tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
|
---|
90 | /// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
|
---|
91 | /// </summary>
|
---|
92 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
93 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
94 | /// <returns></returns>
|
---|
95 | internal IFunctionTree CreateUnbalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
|
---|
96 | IFunction rootFunction = GetRandomRoot(maxTreeSize, maxTreeHeight);
|
---|
97 | IFunctionTree tree = MakeUnbalancedTree(rootFunction, maxTreeHeight - 1);
|
---|
98 | return tree;
|
---|
99 | }
|
---|
100 |
|
---|
101 | internal IFunctionTree PTC2(IRandom random, int size, int maxDepth) {
|
---|
102 | return PTC2(random, GetRandomRoot(size, maxDepth), size, maxDepth);
|
---|
103 | }
|
---|
104 |
|
---|
105 | internal IFunctionTree PTC2(IRandom random, IFunction rootF, int size, int maxDepth) {
|
---|
106 | IFunctionTree root = rootF.GetTreeNode();
|
---|
107 | if(size <= 1 || maxDepth <= 1) return root;
|
---|
108 | List<object[]> list = new List<object[]>();
|
---|
109 | int currentSize = 1;
|
---|
110 | int totalListMinSize = 0;
|
---|
111 | int minArity;
|
---|
112 | int maxArity;
|
---|
113 | GetMinMaxArity(root.Function, out minArity, out maxArity);
|
---|
114 | if(maxArity >= size) {
|
---|
115 | maxArity = size;
|
---|
116 | }
|
---|
117 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
118 | totalListMinSize += GetMinimalTreeSize(root.Function) - 1;
|
---|
119 | for(int i = 0; i < actualArity; i++) {
|
---|
120 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
121 | root.AddSubTree(null);
|
---|
122 | list.Add(new object[] { root, i, 2 });
|
---|
123 | }
|
---|
124 |
|
---|
125 | while(list.Count > 0 && totalListMinSize + currentSize < size) {
|
---|
126 | int randomIndex = random.Next(list.Count);
|
---|
127 | object[] nextExtension = list[randomIndex];
|
---|
128 | list.RemoveAt(randomIndex);
|
---|
129 | IFunctionTree parent = (IFunctionTree)nextExtension[0];
|
---|
130 | int a = (int)nextExtension[1];
|
---|
131 | int d = (int)nextExtension[2];
|
---|
132 | if(d == maxDepth) {
|
---|
133 | parent.RemoveSubTree(a);
|
---|
134 | IFunctionTree branch = CreateRandomTree(GetAllowedSubFunctions(parent.Function, a), 1, 1);
|
---|
135 | parent.InsertSubTree(a, branch); // insert a smallest possible tree
|
---|
136 | currentSize += branch.Size;
|
---|
137 | totalListMinSize -= branch.Size;
|
---|
138 | } else {
|
---|
139 | IFunction selectedFunction = RandomSelect(GetAllowedSubFunctions(parent.Function, a).Where(
|
---|
140 | f => !IsTerminal(f) && GetMinimalTreeHeight(f) + (d - 1) <= maxDepth).ToArray());
|
---|
141 | IFunctionTree newTree = selectedFunction.GetTreeNode();
|
---|
142 | parent.RemoveSubTree(a);
|
---|
143 | parent.InsertSubTree(a, newTree);
|
---|
144 | currentSize++;
|
---|
145 | totalListMinSize--;
|
---|
146 |
|
---|
147 | GetMinMaxArity(selectedFunction, out minArity, out maxArity);
|
---|
148 | if(maxArity >= size) {
|
---|
149 | maxArity = size;
|
---|
150 | }
|
---|
151 | actualArity = random.Next(minArity, maxArity + 1);
|
---|
152 | for(int i = 0; i < actualArity; i++) {
|
---|
153 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
154 | newTree.AddSubTree(null);
|
---|
155 | list.Add(new object[] { newTree, i, d + 1 });
|
---|
156 | }
|
---|
157 | totalListMinSize += GetMinimalTreeSize(newTree.Function) - 1;
|
---|
158 | }
|
---|
159 | }
|
---|
160 | while(list.Count > 0) {
|
---|
161 | int randomIndex = random.Next(list.Count);
|
---|
162 | object[] nextExtension = list[randomIndex];
|
---|
163 | list.RemoveAt(randomIndex);
|
---|
164 | IFunctionTree parent = (IFunctionTree)nextExtension[0];
|
---|
165 | int a = (int)nextExtension[1];
|
---|
166 | int d = (int)nextExtension[2];
|
---|
167 | parent.RemoveSubTree(a);
|
---|
168 | parent.InsertSubTree(a,
|
---|
169 | CreateRandomTree(GetAllowedSubFunctions(parent.Function, a), 1, 1)); // append a tree with minimal possible height
|
---|
170 | }
|
---|
171 | return root;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /// <summary>
|
---|
175 | /// selects a random function from allowedFunctions and creates a random (unbalanced) tree with maximal size and height.
|
---|
176 | /// </summary>
|
---|
177 | /// <param name="allowedFunctions">Set of allowed functions.</param>
|
---|
178 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
179 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
180 | /// <returns>New random unbalanced tree</returns>
|
---|
181 | internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight) {
|
---|
182 | // get the minimal needed height based on allowed functions and extend the max-height if necessary
|
---|
183 | int minTreeHeight = allowedFunctions.Select(f => GetMinimalTreeHeight(f)).Min();
|
---|
184 | if(minTreeHeight > maxTreeHeight)
|
---|
185 | maxTreeHeight = minTreeHeight;
|
---|
186 | // get the minimal needed size based on allowed functions and extend the max-size if necessary
|
---|
187 | int minTreeSize = allowedFunctions.Select(f => GetMinimalTreeSize(f)).Min();
|
---|
188 | if(minTreeSize > maxTreeSize)
|
---|
189 | maxTreeSize = minTreeSize;
|
---|
190 |
|
---|
191 | // select a random value for the size and height
|
---|
192 | int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1);
|
---|
193 | int treeSize = random.Next(minTreeSize, maxTreeSize + 1);
|
---|
194 |
|
---|
195 | // filter the set of allowed functions and select only from those that fit into the given maximal size and height limits
|
---|
196 | IFunction[] possibleFunctions = allowedFunctions.Where(f => GetMinimalTreeHeight(f) <= treeHeight &&
|
---|
197 | GetMinimalTreeSize(f) <= treeSize).ToArray();
|
---|
198 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
199 |
|
---|
200 | // build the tree
|
---|
201 | IFunctionTree root;
|
---|
202 | root = PTC2(random, selectedFunction, maxTreeSize, maxTreeHeight);
|
---|
203 | return root;
|
---|
204 | }
|
---|
205 |
|
---|
206 | internal CompositeOperation CreateInitializationOperation(ICollection<IFunctionTree> trees, IScope scope) {
|
---|
207 | // needed for the parameter shaking operation
|
---|
208 | CompositeOperation initializationOperation = new CompositeOperation();
|
---|
209 | Scope tempScope = new Scope("Temp. initialization scope");
|
---|
210 |
|
---|
211 | var parametricTrees = trees.Where(t => t.Function.GetVariable(FunctionBase.INITIALIZATION) != null);
|
---|
212 | foreach(IFunctionTree tree in parametricTrees) {
|
---|
213 | // enqueue an initialization operation for each operator with local variables
|
---|
214 | IOperator initialization = (IOperator)tree.Function.GetVariable(FunctionBase.INITIALIZATION).Value;
|
---|
215 | Scope initScope = new Scope();
|
---|
216 | // copy the local variables into a temporary scope used for initialization
|
---|
217 | foreach(IVariable variable in tree.LocalVariables) {
|
---|
218 | initScope.AddVariable(variable);
|
---|
219 | }
|
---|
220 | tempScope.AddSubScope(initScope);
|
---|
221 | initializationOperation.AddOperation(new AtomicOperation(initialization, initScope));
|
---|
222 | }
|
---|
223 | Scope backupScope = new Scope("backup");
|
---|
224 | foreach(Scope subScope in scope.SubScopes) {
|
---|
225 | backupScope.AddSubScope(subScope);
|
---|
226 | }
|
---|
227 | scope.AddSubScope(tempScope);
|
---|
228 | scope.AddSubScope(backupScope);
|
---|
229 | // add an operation to remove the temporary scopes
|
---|
230 | initializationOperation.AddOperation(new AtomicOperation(new RightReducer(), scope));
|
---|
231 | return initializationOperation;
|
---|
232 | }
|
---|
233 | #endregion
|
---|
234 |
|
---|
235 | #region tree information gathering
|
---|
236 | internal IFunctionTree GetRandomParentNode(IFunctionTree tree) {
|
---|
237 | List<IFunctionTree> parentNodes = new List<IFunctionTree>();
|
---|
238 |
|
---|
239 | // add null for the parent of the root node
|
---|
240 | parentNodes.Add(null);
|
---|
241 |
|
---|
242 | TreeForEach(tree, delegate(IFunctionTree possibleParentNode) {
|
---|
243 | if(possibleParentNode.SubTrees.Count > 0) {
|
---|
244 | parentNodes.Add(possibleParentNode);
|
---|
245 | }
|
---|
246 | });
|
---|
247 |
|
---|
248 | return parentNodes[random.Next(parentNodes.Count)];
|
---|
249 | }
|
---|
250 |
|
---|
251 | internal ICollection<IFunctionTree> GetAllSubTrees(IFunctionTree root) {
|
---|
252 | List<IFunctionTree> allTrees = new List<IFunctionTree>();
|
---|
253 | TreeForEach(root, t => { allTrees.Add(t); });
|
---|
254 | return allTrees;
|
---|
255 | }
|
---|
256 |
|
---|
257 | /// <summary>
|
---|
258 | /// returns the height level of branch in the tree
|
---|
259 | /// if the branch == tree => 1
|
---|
260 | /// if branch is in the sub-trees of tree => 2
|
---|
261 | /// ...
|
---|
262 | /// if branch is not found => -1
|
---|
263 | /// </summary>
|
---|
264 | /// <param name="tree">root of the function tree to process</param>
|
---|
265 | /// <param name="branch">branch that is searched in the tree</param>
|
---|
266 | /// <returns></returns>
|
---|
267 | internal int GetBranchLevel(IFunctionTree tree, IFunctionTree branch) {
|
---|
268 | return GetBranchLevelHelper(tree, branch, 1);
|
---|
269 | }
|
---|
270 |
|
---|
271 | // 'tail-recursive' helper
|
---|
272 | private int GetBranchLevelHelper(IFunctionTree tree, IFunctionTree branch, int level) {
|
---|
273 | if(branch == tree) return level;
|
---|
274 |
|
---|
275 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
276 | int result = GetBranchLevelHelper(subTree, branch, level + 1);
|
---|
277 | if(result != -1) return result;
|
---|
278 | }
|
---|
279 |
|
---|
280 | return -1;
|
---|
281 | }
|
---|
282 |
|
---|
283 | internal bool IsValidTree(IFunctionTree tree) {
|
---|
284 | SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser();
|
---|
285 | analyzer.AllPossibleOperators = AllFunctions.Cast<IOperator>().ToArray<IOperator>();
|
---|
286 | for(int i = 0; i < tree.SubTrees.Count; i++) {
|
---|
287 | if(!analyzer.GetAllowedOperators(tree.Function, i).Contains(tree.SubTrees[i].Function)) return false;
|
---|
288 | }
|
---|
289 |
|
---|
290 | foreach(IConstraint constraint in tree.Function.Constraints) {
|
---|
291 | if(constraint is NumberOfSubOperatorsConstraint) {
|
---|
292 | int max = ((NumberOfSubOperatorsConstraint)constraint).MaxOperators.Data;
|
---|
293 | int min = ((NumberOfSubOperatorsConstraint)constraint).MinOperators.Data;
|
---|
294 | if(tree.SubTrees.Count < min || tree.SubTrees.Count > max)
|
---|
295 | return false;
|
---|
296 | }
|
---|
297 | }
|
---|
298 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
299 | if(!IsValidTree(subTree)) return false;
|
---|
300 | }
|
---|
301 | return true;
|
---|
302 | }
|
---|
303 |
|
---|
304 | // returns a random branch from the specified level in the tree
|
---|
305 | internal IFunctionTree GetRandomBranch(IFunctionTree tree, int level) {
|
---|
306 | if(level == 0) return tree;
|
---|
307 | List<IFunctionTree> branches = GetBranchesAtLevel(tree, level);
|
---|
308 | return branches[random.Next(branches.Count)];
|
---|
309 | }
|
---|
310 | #endregion
|
---|
311 |
|
---|
312 | #region function information (arity, allowed childs and parents)
|
---|
313 | internal ICollection<IFunction> GetPossibleParents(List<IFunction> list) {
|
---|
314 | List<IFunction> result = new List<IFunction>();
|
---|
315 | foreach(IFunction f in functions) {
|
---|
316 | if(IsPossibleParent(f, list)) {
|
---|
317 | result.Add(f);
|
---|
318 | }
|
---|
319 | }
|
---|
320 | return result;
|
---|
321 | }
|
---|
322 |
|
---|
323 | private bool IsPossibleParent(IFunction f, List<IFunction> children) {
|
---|
324 | int minArity;
|
---|
325 | int maxArity;
|
---|
326 | GetMinMaxArity(f, out minArity, out maxArity);
|
---|
327 |
|
---|
328 | // note: we can't assume that the operators in the children list have different types!
|
---|
329 |
|
---|
330 | // when the maxArity of this function is smaller than the list of operators that
|
---|
331 | // should be included as sub-operators then it can't be a parent
|
---|
332 | if(maxArity < children.Count()) {
|
---|
333 | return false;
|
---|
334 | }
|
---|
335 | int nSlots = Math.Max(minArity, children.Count);
|
---|
336 |
|
---|
337 | SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser();
|
---|
338 | analyzer.AllPossibleOperators = children.Cast<IOperator>().ToArray<IOperator>();
|
---|
339 |
|
---|
340 | List<HashSet<IFunction>> slotSets = new List<HashSet<IFunction>>();
|
---|
341 |
|
---|
342 | // we iterate through all slots for sub-trees and calculate the set of
|
---|
343 | // allowed functions for this slot.
|
---|
344 | // we only count those slots that can hold at least one of the children that we should combine
|
---|
345 | for(int slot = 0; slot < nSlots; slot++) {
|
---|
346 | HashSet<IFunction> functionSet = new HashSet<IFunction>(analyzer.GetAllowedOperators(f, slot).Cast<IFunction>());
|
---|
347 | if(functionSet.Count() > 0) {
|
---|
348 | slotSets.Add(functionSet);
|
---|
349 | }
|
---|
350 | }
|
---|
351 |
|
---|
352 | // ok at the end of this operation we know how many slots of the parent can actually
|
---|
353 | // hold one of our children.
|
---|
354 | // if the number of slots is smaller than the number of children we can be sure that
|
---|
355 | // we can never combine all children as sub-trees of the function and thus the function
|
---|
356 | // can't be a parent.
|
---|
357 | if(slotSets.Count() < children.Count()) {
|
---|
358 | return false;
|
---|
359 | }
|
---|
360 |
|
---|
361 | // finally we sort the sets by size and beginning from the first set select one
|
---|
362 | // function for the slot and thus remove it as possible sub-tree from the remaining sets.
|
---|
363 | // when we can successfully assign all available children to a slot the function is a valid parent
|
---|
364 | // when only a subset of all children can be assigned to slots the function is no valid parent
|
---|
365 | slotSets.Sort((p, q) => p.Count() - q.Count());
|
---|
366 |
|
---|
367 | int assignments = 0;
|
---|
368 | for(int i = 0; i < slotSets.Count() - 1; i++) {
|
---|
369 | if(slotSets[i].Count > 0) {
|
---|
370 | IFunction selected = slotSets[i].ElementAt(0);
|
---|
371 | assignments++;
|
---|
372 | for(int j = i + 1; j < slotSets.Count(); j++) {
|
---|
373 | slotSets[j].Remove(selected);
|
---|
374 | }
|
---|
375 | }
|
---|
376 | }
|
---|
377 |
|
---|
378 | // sanity check
|
---|
379 | if(assignments > children.Count) throw new InvalidProgramException();
|
---|
380 | return assignments == children.Count - 1;
|
---|
381 | }
|
---|
382 | internal IList<IFunction> GetAllowedParents(IFunction child, int childIndex) {
|
---|
383 | List<IFunction> parents = new List<IFunction>();
|
---|
384 | foreach(IFunction function in functions) {
|
---|
385 | ICollection<IFunction> allowedSubFunctions = GetAllowedSubFunctions(function, childIndex);
|
---|
386 | if(allowedSubFunctions.Contains(child)) {
|
---|
387 | parents.Add(function);
|
---|
388 | }
|
---|
389 | }
|
---|
390 | return parents;
|
---|
391 | }
|
---|
392 | internal bool IsTerminal(IFunction f) {
|
---|
393 | int minArity;
|
---|
394 | int maxArity;
|
---|
395 | GetMinMaxArity(f, out minArity, out maxArity);
|
---|
396 | return minArity == 0 && maxArity == 0;
|
---|
397 | }
|
---|
398 | internal IList<IFunction> GetAllowedSubFunctions(IFunction f, int index) {
|
---|
399 | if(f == null) {
|
---|
400 | return allFunctions;
|
---|
401 | } else {
|
---|
402 | SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser();
|
---|
403 | analyzer.AllPossibleOperators = AllFunctions.Cast<IOperator>().ToArray<IOperator>();
|
---|
404 | List<IFunction> result = new List<IFunction>();
|
---|
405 | foreach(IFunction function in analyzer.GetAllowedOperators(f, index)) {
|
---|
406 | result.Add(function);
|
---|
407 | }
|
---|
408 | return result;
|
---|
409 | }
|
---|
410 | }
|
---|
411 | internal void GetMinMaxArity(IFunction f, out int minArity, out int maxArity) {
|
---|
412 | foreach(IConstraint constraint in f.Constraints) {
|
---|
413 | NumberOfSubOperatorsConstraint theConstraint = constraint as NumberOfSubOperatorsConstraint;
|
---|
414 | if(theConstraint != null) {
|
---|
415 | minArity = theConstraint.MinOperators.Data;
|
---|
416 | maxArity = theConstraint.MaxOperators.Data;
|
---|
417 | return;
|
---|
418 | }
|
---|
419 | }
|
---|
420 | // the default arity is 2
|
---|
421 | minArity = 2;
|
---|
422 | maxArity = 2;
|
---|
423 | }
|
---|
424 | #endregion
|
---|
425 |
|
---|
426 | #region private utility methods
|
---|
427 | private IFunction GetRandomRoot(int maxTreeSize, int maxTreeHeight) {
|
---|
428 | if(maxTreeHeight == 1 || maxTreeSize == 1) {
|
---|
429 | IFunction selectedTerminal = RandomSelect(terminals);
|
---|
430 | return selectedTerminal;
|
---|
431 | } else {
|
---|
432 | IFunction[] possibleFunctions = functions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
433 | GetMinimalTreeSize(f) <= maxTreeSize).ToArray();
|
---|
434 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
435 | return selectedFunction;
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 |
|
---|
440 | private IFunctionTree MakeUnbalancedTree(IFunction parent, int maxTreeHeight) {
|
---|
441 | if(maxTreeHeight == 0) return parent.GetTreeNode();
|
---|
442 | int minArity;
|
---|
443 | int maxArity;
|
---|
444 | GetMinMaxArity(parent, out minArity, out maxArity);
|
---|
445 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
446 | if(actualArity > 0) {
|
---|
447 | IFunctionTree parentTree = parent.GetTreeNode();
|
---|
448 | for(int i = 0; i < actualArity; i++) {
|
---|
449 | IFunction[] possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight).ToArray();
|
---|
450 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
451 | IFunctionTree newSubTree = MakeUnbalancedTree(selectedFunction, maxTreeHeight - 1);
|
---|
452 | parentTree.InsertSubTree(i, newSubTree);
|
---|
453 | }
|
---|
454 | return parentTree;
|
---|
455 | }
|
---|
456 | return parent.GetTreeNode();
|
---|
457 | }
|
---|
458 |
|
---|
459 |
|
---|
460 | // NOTE: this method doesn't build fully balanced trees because we have constraints on the
|
---|
461 | // types of possible sub-functions which can indirectly impose a limit for the depth of a given sub-tree
|
---|
462 | private IFunctionTree MakeBalancedTree(IFunction parent, int maxTreeHeight) {
|
---|
463 | if(maxTreeHeight == 0) return parent.GetTreeNode();
|
---|
464 | int minArity;
|
---|
465 | int maxArity;
|
---|
466 | GetMinMaxArity(parent, out minArity, out maxArity);
|
---|
467 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
468 | if(actualArity > 0) {
|
---|
469 | IFunctionTree parentTree = parent.GetTreeNode();
|
---|
470 | for(int i = 0; i < actualArity; i++) {
|
---|
471 | // first try to find a function that fits into the maxHeight limit
|
---|
472 | IFunction[] possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
473 | !IsTerminal(f)).ToArray();
|
---|
474 | // no possible function found => extend function set to terminals
|
---|
475 | if(possibleFunctions.Length == 0) {
|
---|
476 | possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => IsTerminal(f)).ToArray();
|
---|
477 | IFunction selectedTerminal = RandomSelect(possibleFunctions);
|
---|
478 | IFunctionTree newTree = selectedTerminal.GetTreeNode();
|
---|
479 | parentTree.InsertSubTree(i, newTree);
|
---|
480 | } else {
|
---|
481 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
482 | IFunctionTree newTree = MakeBalancedTree(selectedFunction, maxTreeHeight - 1);
|
---|
483 | parentTree.InsertSubTree(i, newTree);
|
---|
484 | }
|
---|
485 | }
|
---|
486 | return parentTree;
|
---|
487 | }
|
---|
488 | return parent.GetTreeNode();
|
---|
489 | }
|
---|
490 |
|
---|
491 | private int GetMinimalTreeHeight(IOperator op) {
|
---|
492 | return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data;
|
---|
493 | }
|
---|
494 |
|
---|
495 | private int GetMinimalTreeSize(IOperator op) {
|
---|
496 | return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data;
|
---|
497 | }
|
---|
498 |
|
---|
499 | private void TreeForEach(IFunctionTree tree, Action<IFunctionTree> action) {
|
---|
500 | action(tree);
|
---|
501 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
502 | TreeForEach(subTree, action);
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | private List<IFunctionTree> GetBranchesAtLevel(IFunctionTree tree, int level) {
|
---|
507 | if(level == 1) return new List<IFunctionTree>(tree.SubTrees);
|
---|
508 |
|
---|
509 | List<IFunctionTree> branches = new List<IFunctionTree>();
|
---|
510 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
511 | if(subTree.Height >= level - 1)
|
---|
512 | branches.AddRange(GetBranchesAtLevel(subTree, level - 1));
|
---|
513 | }
|
---|
514 | return branches;
|
---|
515 | }
|
---|
516 |
|
---|
517 | private IFunction RandomSelect(IList<IFunction> functionSet) {
|
---|
518 | double[] accumulatedTickets = new double[functionSet.Count];
|
---|
519 | double ticketAccumulator = 0;
|
---|
520 | int i = 0;
|
---|
521 | // precalculate the slot-sizes
|
---|
522 | foreach(IFunction function in functionSet) {
|
---|
523 | ticketAccumulator += ((DoubleData)function.GetVariable(GPOperatorLibrary.TICKETS).Value).Data;
|
---|
524 | accumulatedTickets[i] = ticketAccumulator;
|
---|
525 | i++;
|
---|
526 | }
|
---|
527 | // throw ball
|
---|
528 | double r = random.NextDouble() * ticketAccumulator;
|
---|
529 | // find the slot that has been hit
|
---|
530 | for(i = 0; i < accumulatedTickets.Length; i++) {
|
---|
531 | if(r < accumulatedTickets[i]) return functionSet[i];
|
---|
532 | }
|
---|
533 | // sanity check
|
---|
534 | throw new InvalidProgramException(); // should never happen
|
---|
535 | }
|
---|
536 |
|
---|
537 | #endregion
|
---|
538 |
|
---|
539 | }
|
---|
540 | }
|
---|