#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Data; using HeuristicLab.Constraints; using HeuristicLab.Functions; using System.Diagnostics; namespace HeuristicLab.StructureIdentification { public class SizeFairCrossOver : OperatorBase { public override string Description { get { return @"Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1. And replaces the branch with root N0 in P0 with N1 from P1 if the tree-size limits are not violated. When recombination with N0 and N1 would create a tree that is too large the operator randomly either goes up in P0 (parent of N0) or down in P1 (random child of N1) until a valid configuration is found."; } } public SizeFairCrossOver() : base() { AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In)); AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New)); AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New)); AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New)); } public override IOperation Apply(IScope scope) { MersenneTwister random = GetVariableValue("Random", scope, true); GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true); int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data; int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data; TreeGardener gardener = new TreeGardener(random, opLibrary); if((scope.SubScopes.Count % 2) != 0) throw new InvalidOperationException("Number of parents is not even"); CompositeOperation initOperations = new CompositeOperation(); int children = scope.SubScopes.Count / 2; for(int i = 0; i < children; i++) { IScope parent1 = scope.SubScopes[0]; scope.RemoveSubScope(parent1); IScope parent2 = scope.SubScopes[0]; scope.RemoveSubScope(parent2); IScope child = new Scope(i.ToString()); IOperation childInitOperation = Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child); initOperations.AddOperation(childInitOperation); scope.AddSubScope(child); } return initOperations; } private IOperation Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight, IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) { List newBranches; IFunctionTree newTree = Cross(gardener, parent1, parent2, random, maxTreeSize, maxTreeHeight, out newBranches); int newTreeSize = newTree.Size; int newTreeHeight = newTree.Height; child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree)); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTreeSize))); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTreeHeight))); // check if the new tree is valid and if the size of is still in the allowed bounds Debug.Assert(gardener.IsValidTree(newTree) && newTreeHeight <= maxTreeHeight && newTreeSize <= maxTreeSize); return gardener.CreateInitializationOperation(newBranches, child); } private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight, out List newBranches) { IFunctionTree tree0 = f.GetVariableValue("FunctionTree", false); int tree0Height = f.GetVariableValue("TreeHeight", false).Data; int tree0Size = f.GetVariableValue("TreeSize", false).Data; IFunctionTree tree1 = g.GetVariableValue("FunctionTree", false); int tree1Height = g.GetVariableValue("TreeHeight", false).Data; int tree1Size = g.GetVariableValue("TreeSize", false).Data; if(tree0Size == 1 && tree1Size == 1) { return CombineTerminals(gardener, tree0, tree1, random, maxTreeHeight, out newBranches); } else { // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal // in case both trees are higher than 1 we swap the trees with probability 50% if(tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) { IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp; int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight; int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize; } // save the root because later on we change tree0 and tree1 while searching a valid tree configuration IFunctionTree root = tree0; int rootSize = tree0Size; // select a random suboperators of the two trees at a random level int tree0Level = random.Next(tree0Height - 1); // since we checked before that the height of tree0 is > 1 this is OK int tree1Level = random.Next(tree1Height); tree0 = gardener.GetRandomBranch(tree0, tree0Level); tree1 = gardener.GetRandomBranch(tree1, tree1Level); // recalculate the size and height of tree1 (the one that we want to insert) because we need to check constraints later on tree1Size = tree1.Size; tree1Height = tree1.Height; List possibleChildIndices = new List(); // Now tree0 is supposed to take tree1 as one if its children. If this is not possible, // then go down in either of the two trees as far as possible. If even then it is not possible // to merge the trees then throw an exception // find the list of allowed indices (regarding allowed sub-trees, maxTreeSize and maxTreeHeight) for(int i = 0; i < tree0.SubTrees.Count; i++) { int subTreeSize = tree0.SubTrees[i].Size; // the index is ok when the function is allowed as sub-tree and we don't violate the maxSize and maxHeight constraints if(gardener.GetAllowedSubFunctions(tree0.Function, i).Contains(tree1.Function) && rootSize - subTreeSize + tree1Size < maxTreeSize && tree0Level + tree1Height < maxTreeHeight) { possibleChildIndices.Add(i); } } while(possibleChildIndices.Count == 0) { // we couln't find a possible configuration given the current tree0 and tree1 // possible reasons for this are: // - tree1 is not allowed as sub-tree of tree0 // - appending tree1 as child of tree0 would create a tree that exceedes the maxTreeHeight // - replacing any child of tree0 with tree1 woulde create a tree that exceedes the maxTeeSize // thus we have to either: // - go up in tree0 => the insert position allows larger trees // - go down in tree1 => the tree that is inserted becomes smaller // - however we have to get lucky to solve the 'allowed sub-trees' problem if(tree1Height == 1 || (tree0Level > 0 && random.Next(2) == 0)) { // go up in tree0 tree0Level--; tree0 = gardener.GetRandomBranch(root, tree0Level); } else if(tree1.SubTrees.Count > 0) { // go down in node2: tree1 = tree1.SubTrees[random.Next(tree1.SubTrees.Count)]; tree1Size = tree1.Size; tree1Height = tree1.Height; } else { // could neither go up or down ... don't know what to do ... give up throw new InvalidProgramException(); } // recalculate the list of possible indices possibleChildIndices.Clear(); for(int i = 0; i < tree0.SubTrees.Count; i++) { int subTreeSize = tree0.SubTrees[i].Size; // when the function is allowed as sub-tree and we don't violate the maxSize and maxHeight constraints // the index is ok if(gardener.GetAllowedSubFunctions(tree0.Function, i).Contains(tree1.Function) && rootSize - subTreeSize + tree1Size < maxTreeSize && tree0Level + tree1Height < maxTreeHeight) { possibleChildIndices.Add(i); } } } // no possible configuration found this indicates that there is a bigger problem if(possibleChildIndices.Count == 0) { throw new InvalidProgramException(); } // replace the existing sub-tree at a random index in tree0 with tree1 int selectedIndex = possibleChildIndices[random.Next(possibleChildIndices.Count)]; tree0.RemoveSubTree(selectedIndex); tree0.InsertSubTree(selectedIndex, tree1); // no new operators where needed newBranches = new List(); return root; } } // take f and g and create a tree that has f and g as sub-trees // example // O // /|\ // g 2 f // private IFunctionTree CombineTerminals(TreeGardener gardener, IFunctionTree f, IFunctionTree g, MersenneTwister random, int maxTreeHeight, out List newBranches) { newBranches = new List(); // determine the set of possible parent functions ICollection possibleParents = gardener.GetPossibleParents(new List() { f.Function, g.Function }); if(possibleParents.Count == 0) throw new InvalidProgramException(); // and select a random one IFunctionTree parent = possibleParents.ElementAt(random.Next(possibleParents.Count())).GetTreeNode(); int minArity; int maxArity; gardener.GetMinMaxArity(parent.Function, out minArity, out maxArity); int nSlots = Math.Max(2, minArity); // determine which slot can take which sub-trees List[] slots = new List[nSlots]; for(int slot = 0; slot < nSlots; slot++) { ICollection allowedSubFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot); List allowedTrees = new List(); if(allowedSubFunctions.Contains(f.Function)) allowedTrees.Add(f); if(allowedSubFunctions.Contains(g.Function)) allowedTrees.Add(g); slots[slot] = allowedTrees; } // fill the slots in the order of degrees of freedom int[] slotSequence = Enumerable.Range(0, slots.Count()).OrderBy(slot => slots[slot].Count()).ToArray(); // tmp arry to store the tree for each sub-tree slot of the parent IFunctionTree[] selectedFunctionTrees = new IFunctionTree[nSlots]; // fill the sub-tree slots of the parent starting with the slots that can take potentially both functions (f and g) for(int i = 0; i < slotSequence.Length; i++) { int slot = slotSequence[i]; List allowedTrees = slots[slot]; // when neither f nor g fit into the slot => create a new random tree if(allowedTrees.Count() == 0) { var allowedFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot); selectedFunctionTrees[slot] = gardener.CreateRandomTree(allowedFunctions, 1, 1, true); newBranches.AddRange(gardener.GetAllSubTrees(selectedFunctionTrees[slot])); } else { // select randomly which tree to insert into this slot IFunctionTree selectedTree = allowedTrees[random.Next(allowedTrees.Count())]; selectedFunctionTrees[slot] = selectedTree; // remove the tree that we used in this slot from following function-sets for(int j = i + 1; j < slotSequence.Length; j++) { int otherSlot = slotSequence[j]; slots[otherSlot].Remove(selectedTree); } } } // actually append the sub-trees to the parent tree for(int i = 0; i < selectedFunctionTrees.Length; i++) { parent.InsertSubTree(i, selectedFunctionTrees[i]); } return parent; } } }