#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.DataAnalysis;
using HeuristicLab.Functions;
namespace HeuristicLab.StructureIdentification {
public class MulticlassOneVsOneAnalyzer : OperatorBase {
private const string DATASET = "Dataset";
private const string TARGETVARIABLE = "TargetVariable";
private const string TARGETCLASSVALUES = "TargetClassValues";
private const string SAMPLESSTART = "SamplesStart";
private const string SAMPLESEND = "SamplesEnd";
private const string CLASSAVALUE = "ClassAValue";
private const string CLASSBVALUE = "ClassBValue";
private const string BESTMODELLSCOPE = "BestValidationSolution";
private const string BESTMODELL = "FunctionTree";
private const string VOTES = "Votes";
private const string ACCURACY = "Accuracy";
private const double EPSILON = 1E-6;
public override string Description {
get { return @"TASK"; }
}
public MulticlassOneVsOneAnalyzer()
: base() {
AddVariableInfo(new VariableInfo(DATASET, "The dataset to use", typeof(Dataset), VariableKind.In));
AddVariableInfo(new VariableInfo(TARGETVARIABLE, "Target variable", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo(TARGETCLASSVALUES, "Class values of the target variable in the original dataset", typeof(ItemList), VariableKind.In));
AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the class A in the subscope", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the class B in the subscope", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo(SAMPLESSTART, "The start of samples in the original dataset", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo(SAMPLESEND, "The end of samples in the original dataset", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo(BESTMODELLSCOPE, "The variable containing the scope of the model (incl. meta data)", typeof(IScope), VariableKind.In));
AddVariableInfo(new VariableInfo(BESTMODELL, "The variable in the scope of the model that contains the actual model", typeof(IFunctionTree), VariableKind.In));
AddVariableInfo(new VariableInfo(VOTES, "Array with the votes for each instance", typeof(IntMatrixData), VariableKind.New));
AddVariableInfo(new VariableInfo(ACCURACY, "Accuracy of the one-vs-one multi-cass classifier", typeof(DoubleData), VariableKind.New));
}
public override IOperation Apply(IScope scope) {
Dataset dataset = GetVariableValue(DATASET, scope, true);
int targetVariable = GetVariableValue(TARGETVARIABLE, scope, true).Data;
int samplesStart = GetVariableValue(SAMPLESSTART, scope, true).Data;
int samplesEnd = GetVariableValue(SAMPLESEND, scope, true).Data;
ItemList classValues = GetVariableValue>(TARGETCLASSVALUES, scope, true);
int[,] votes = new int[samplesEnd - samplesStart, classValues.Count];
foreach(IScope childScope in scope.SubScopes) {
double classAValue = GetVariableValue(CLASSAVALUE, childScope, true).Data;
double classBValue = GetVariableValue(CLASSBVALUE, childScope, true).Data;
IScope bestScope = GetVariableValue(BESTMODELLSCOPE, childScope, true);
IFunctionTree functionTree = GetVariableValue(BESTMODELL, bestScope, true);
IEvaluator evaluator = functionTree.CreateEvaluator();
evaluator.ResetEvaluator(functionTree, dataset);
for(int i = 0; i < (samplesEnd - samplesStart); i++) {
double est = evaluator.Evaluate(i + samplesStart);
if(est < 0.5) {
CastVote(votes, i, classAValue, classValues);
} else {
CastVote(votes, i, classBValue, classValues);
}
}
}
int correctlyClassified = 0;
for(int i = 0; i < (samplesEnd - samplesStart); i++) {
double originalClassValue = dataset.GetValue(i + samplesStart, targetVariable);
double estimatedClassValue = classValues[0].Data;
int maxVotes = votes[i, 0];
int sameVotes = 0;
for(int j = 1; j < classValues[j].Data; j++) {
if(votes[i, j] > maxVotes) {
maxVotes = votes[i, j];
estimatedClassValue = classValues[j].Data;
sameVotes = 0;
} else if(votes[i, j] == maxVotes) {
sameVotes++;
}
}
if(IsEqual(originalClassValue, estimatedClassValue) && sameVotes == 0) correctlyClassified++;
}
double accuracy = correctlyClassified / (double)(samplesEnd - samplesStart);
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VOTES), new IntMatrixData(votes)));
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(ACCURACY), new DoubleData(accuracy)));
return null;
}
private void CastVote(int[,] votes, int sample, double votedClass, ItemList classValues) {
for(int i = 0; i < classValues.Count; i++) {
if(IsEqual(classValues[i].Data, votedClass)) votes[sample, i]++;
}
}
private bool IsEqual(double x, double y) {
return Math.Abs(x - y) < EPSILON;
}
}
}