#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Functions;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.StructureIdentification {
public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
public override string Description {
get {
return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
the 'Theil inequality coefficient (scale invariant)' of estimated values vs. real values of 'TargetVariable'.";
}
}
public TheilInequalityCoefficientEvaluator()
: base() {
AddVariableInfo(new VariableInfo("Differential", "Wether to calculate the coefficient for the predicted change vs. original change or for the absolute prediction vs. original value", typeof(BoolData), VariableKind.In));
}
public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
int trainingStart = GetVariableValue("TrainingSamplesStart", scope, true).Data;
int trainingEnd = GetVariableValue("TrainingSamplesEnd", scope, true).Data;
bool difference = GetVariableValue("Differential", scope, true).Data;
double errorsSquaredSum = 0.0;
double estimatedSquaredSum = 0.0;
double originalSquaredSum = 0.0;
functionTree.PrepareEvaluation(dataset);
for(int sample = trainingStart; sample < trainingEnd; sample++) {
double prevValue = 0.0;
if(difference) prevValue = dataset.GetValue(sample - 1, targetVariable);
double estimatedChange = functionTree.Evaluate(sample) - prevValue;
double originalChange = dataset.GetValue(sample, targetVariable) - prevValue;
if(!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
if(double.IsNaN(estimatedChange) || double.IsInfinity(estimatedChange))
estimatedChange = maximumPunishment;
else if(estimatedChange > maximumPunishment)
estimatedChange = maximumPunishment;
else if(estimatedChange < -maximumPunishment)
estimatedChange = - maximumPunishment;
double error = estimatedChange - originalChange;
errorsSquaredSum += error * error;
estimatedSquaredSum += estimatedChange * estimatedChange;
originalSquaredSum += originalChange * originalChange;
}
}
int nSamples = trainingEnd - trainingStart;
double quality = Math.Sqrt(errorsSquaredSum / nSamples) / (Math.Sqrt(estimatedSquaredSum/nSamples) + Math.Sqrt(originalSquaredSum/nSamples));
if(double.IsNaN(quality) || double.IsInfinity(quality))
quality = double.MaxValue;
return quality;
}
}
}