#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Functions; using HeuristicLab.DataAnalysis; namespace HeuristicLab.StructureIdentification { public class MeanSquaredErrorEvaluator : GPEvaluatorBase { protected double[] backupValues; public override string Description { get { return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error for the estimated values vs. the real values of 'TargetVariable'."; } } public MeanSquaredErrorEvaluator() : base() { AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the targat variable when doing autoregressive modelling", typeof(BoolData), VariableKind.In)); GetVariableInfo("UseEstimatedTargetValue").Local = true; AddVariable(new HeuristicLab.Core.Variable("UseEstimatedTargetValue", new BoolData(false))); } public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) { int trainingStart = GetVariableValue("TrainingSamplesStart", scope, true).Data; int trainingEnd = GetVariableValue("TrainingSamplesEnd", scope, true).Data; double errorsSquaredSum = 0; double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd); bool useEstimatedValues = GetVariableValue("UseEstimatedTargetValue", scope, false).Data; if(useEstimatedValues && backupValues == null) { backupValues = new double[trainingEnd - trainingStart]; for(int i = trainingStart; i < trainingEnd; i++) { backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable); } } functionTree.PrepareEvaluation(dataset); for(int sample = trainingStart; sample < trainingEnd; sample++) { double estimated = functionTree.Evaluate(sample); double original = dataset.GetValue(sample, targetVariable); if(double.IsNaN(estimated) || double.IsInfinity(estimated)) { estimated = targetMean + maximumPunishment; } else if(estimated > targetMean + maximumPunishment) { estimated = targetMean + maximumPunishment; } else if(estimated < targetMean - maximumPunishment) { estimated = targetMean - maximumPunishment; } double error = estimated - original; errorsSquaredSum += error * error; if(useEstimatedValues) { dataset.SetValue(sample, targetVariable, estimated); } } if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd); errorsSquaredSum /= (trainingEnd-trainingStart); if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) { errorsSquaredSum = double.MaxValue; } scope.GetVariableValue("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd-trainingStart); return errorsSquaredSum; } private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) { for(int i = from; i < to; i++) { dataset.SetValue(i, targetVariable, backupValues[i-from]); } } } }