#region License Information
/* HeuristicLab
* Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
namespace HeuristicLab.StatisticalAnalysis {
public class SimpleStatisticsCalculator : OperatorBase {
public override string Description {
get { return @"Takes a DoubleArrayData, IntArrayData, ItemList (containing IntData or DoubleData), ItemList, or ItemList and calculates mean, median, standard deviation, sum, minimum, and maximum."; }
}
public SimpleStatisticsCalculator()
: base() {
AddVariableInfo(new VariableInfo("Samples", "The array or ItemList containing the samples", typeof(IItem), VariableKind.In));
AddVariableInfo(new VariableInfo("Mean", "The mean of the samples", typeof(DoubleData), VariableKind.New | VariableKind.Out));
AddVariableInfo(new VariableInfo("Median", "The median of the samples", typeof(DoubleData), VariableKind.New | VariableKind.Out));
AddVariableInfo(new VariableInfo("StdDev", "The standard deviation of the samples", typeof(DoubleData), VariableKind.New | VariableKind.Out));
AddVariableInfo(new VariableInfo("Sum", "The sum of the samples", typeof(DoubleData), VariableKind.New | VariableKind.Out));
AddVariableInfo(new VariableInfo("Minimum", "The smallest of the samples", typeof(DoubleData), VariableKind.New | VariableKind.Out));
AddVariableInfo(new VariableInfo("Maximum", "The largest of the samples", typeof(DoubleData), VariableKind.New | VariableKind.Out));
}
public override IOperation Apply(IScope scope) {
IItem data = GetVariableValue("Samples", scope, false);
double[] samples; // put the samples into a double array
#region fill samples with data
// find out which type it actually is
Type t = data.GetType();
if (t.Equals(typeof(DoubleArrayData))) {
DoubleArrayData dAD = (DoubleArrayData)data;
samples = new double[dAD.Data.Length];
for (int i = 0; i < samples.Length; i++)
samples[i] = dAD.Data[i];
} else if (t.Equals(typeof(IntArrayData))) {
IntArrayData iAD = (IntArrayData)data;
samples = new double[iAD.Data.Length];
for (int i = 0; i < samples.Length; i++)
samples[i] = (double)iAD.Data[i];
} else if (t.Equals(typeof(ItemList))) {
ItemList iLDD = (ItemList)data;
samples = new double[iLDD.Count];
for (int i = 0; i < samples.Length; i++)
samples[i] = iLDD[i].Data;
} else if (t.Equals(typeof(ItemList))) {
ItemList iLID = (ItemList)data;
samples = new double[iLID.Count];
for (int i = 0; i < samples.Length; i++)
samples[i] = iLID[i].Data;
} else if (t.Equals(typeof(ItemList))) {
ItemList iL = (ItemList)data;
samples = new double[iL.Count];
for (int i = 0; i < samples.Length; i++) {
if (iL[i] is DoubleData) samples[i] = ((DoubleData)(iL[i])).Data;
else if (iL[i] is IntData) samples[i] = (double)((IntData)(iL[i])).Data;
else throw new ArgumentException("ERROR in SimpleStatisticsCalculator: The ItemList does not contain DoubleData or IntData");
}
} else throw new ArgumentException("ERROR in SimpleStatisticsCalculator: Samples are not in a recognized data format");
#endregion
int len = samples.Length;
if (len < 1) throw new ArgumentException("ERROR in SimpleStatisticsCalculator: Sample size is less than 1");
Array.Sort(samples);
double mean = 0.0;
double median = ((len % 2 == 0) ? ((samples[len / 2 - 1] + samples[len / 2]) / 2.0) : (samples[len / 2]));
double stdDev = 0.0;
double sum = 0.0;
double min = samples[0];
double max = samples[samples.Length - 1];
for (int i = 0; i < samples.Length; i++) {
sum += samples[i];
}
mean = sum / (double)len;
if (len > 1) {
for (int i = 0; i < samples.Length; i++) {
stdDev = Math.Pow(mean - samples[i], 2);
}
stdDev = Math.Sqrt(stdDev / (double)(len - 1));
}
#region output variables
WriteVariable(GetVariableInfo("Mean"), mean, scope);
WriteVariable(GetVariableInfo("Median"), median, scope);
WriteVariable(GetVariableInfo("StdDev"), stdDev, scope);
WriteVariable(GetVariableInfo("Sum"), sum, scope);
WriteVariable(GetVariableInfo("Minimum"), min, scope);
WriteVariable(GetVariableInfo("Maximum"), max, scope);
#endregion
return null;
}
private void WriteVariable(IVariableInfo info, double value, IScope scope) {
if (info.Local) {
IVariable var = GetVariable(info.ActualName);
if (var == null) AddVariable(new Variable(info.ActualName, new DoubleData(value)));
else (var.Value as DoubleData).Data = value;
} else {
string name = scope.TranslateName(info.FormalName);
IVariable var = scope.GetVariable(name);
if (var == null) scope.AddVariable(new Variable(name, new DoubleData(value)));
else (var.Value as DoubleData).Data = value;
}
}
}
}