#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; namespace HeuristicLab.Selection { public class ProportionalSelector : StochasticSelectorBase { public override string Description { get { return @"TODO\r\nOperator description still missing ..."; } } public ProportionalSelector() { AddVariableInfo(new VariableInfo("Maximization", "Maximization problem", typeof(BoolData), VariableKind.In)); AddVariableInfo(new VariableInfo("Quality", "Quality value", typeof(DoubleData), VariableKind.In)); AddVariableInfo(new VariableInfo("Windowing", "Apply windowing strategy (selection probability is proportional to the quality differences and not to the total quality)", typeof(BoolData), VariableKind.In)); GetVariableInfo("Windowing").Local = true; AddVariable(new Variable("Windowing", new BoolData(true))); GetVariable("CopySelected").GetValue().Data = true; } protected override void Select(IRandom random, IScope source, int selected, IScope target, bool copySelected) { bool maximization = GetVariableValue("Maximization", source, true).Data; IVariableInfo qualityInfo = GetVariableInfo("Quality"); bool windowing = GetVariableValue("Windowing", source, true).Data; double[] qualities; double qualitySum; double selectedQuality; double sum; int j; GenerateQualitiesArray(source, maximization, qualityInfo, windowing, out qualities, out qualitySum); // perform selection for (int i = 0; i < selected; i++) { selectedQuality = random.NextDouble() * qualitySum; sum = 0; j = 0; while ((j < qualities.Length) && (sum <= selectedQuality)) { sum += qualities[j]; j++; } IScope selectedScope = source.SubScopes[j - 1]; if (copySelected) target.AddSubScope((IScope)selectedScope.Clone()); else { source.RemoveSubScope(selectedScope); target.AddSubScope(selectedScope); GenerateQualitiesArray(source, maximization, qualityInfo, windowing, out qualities, out qualitySum); } } } private void GenerateQualitiesArray(IScope source, bool maximization, IVariableInfo qualityInfo, bool windowing, out double[] qualities, out double qualitySum) { int subScopes = source.SubScopes.Count; qualities = new double[subScopes]; qualitySum = 0; if (subScopes < 1) throw new InvalidOperationException("No source scopes to select available."); double best = source.SubScopes[0].GetVariableValue(qualityInfo.ActualName, false).Data; double worst = source.SubScopes[subScopes - 1].GetVariableValue(qualityInfo.ActualName, false).Data; double limit = Math.Min(worst * 2, double.MaxValue); double min = Math.Min(best, worst); double max = Math.Max(best, worst); double solutionQuality; // preprocess fitness values, apply windowing if desired for (int i = 0; i < qualities.Length; i++) { solutionQuality = source.SubScopes[i].GetVariableValue(qualityInfo.ActualName, false).Data; if (solutionQuality < min || solutionQuality > max) { // something has obviously gone wrong here string errorMessage = "There is a problem with the ordering of the source sub-scopes in " + Name + ".\r\n" + "The quality of solution number " + i.ToString() + " is "; if (solutionQuality < min) errorMessage += "below"; else errorMessage += "greater than"; errorMessage += " the calculated qualities range:\r\n"; errorMessage += solutionQuality.ToString() + " is outside the interval [ " + min.ToString() + " ; " + max.ToString() + " ]."; throw new InvalidOperationException(errorMessage); } if (best != worst) { // prevent division by zero if (windowing) { if (!maximization) { qualities[i] = 1 - ((solutionQuality - best) / (worst - best)); } else { qualities[i] = (solutionQuality - worst) / (best - worst); } } else { if (!maximization) qualities[i] = limit - solutionQuality; else qualities[i] = solutionQuality; } } else { // best == worst -> all fitness values are equal qualities[i] = 1; } qualitySum += qualities[i]; } if (double.IsInfinity(qualitySum)) qualitySum = double.MaxValue; } } }