#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Evolutionary;
using HeuristicLab.Data;
namespace HeuristicLab.RealVector {
public class BlendAlphaBetaCrossover : CrossoverBase {
public override string Description {
get { return
@"Blend alpha-beta crossover for real vectors. Creates a new offspring by selecting a random value from the interval between the two alleles of the parent solutions. The interval is increased in both directions as follows: Into the direction of the 'better' solution by the factor alpha, into the direction of the 'worse' solution by the factor beta.
Please use the operator BoundsChecker if necessary.";
}
}
public BlendAlphaBetaCrossover()
: base() {
AddVariableInfo(new VariableInfo("Maximization", "Maximization problem", typeof(BoolData), VariableKind.In));
AddVariableInfo(new VariableInfo("Quality", "Quality value", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("RealVector", "Parent and child real vector", typeof(DoubleArrayData), VariableKind.In | VariableKind.New));
VariableInfo alphaVarInfo = new VariableInfo("Alpha", "Value for alpha", typeof(DoubleData), VariableKind.In);
alphaVarInfo.Local = true;
AddVariableInfo(alphaVarInfo);
AddVariable(new Variable("Alpha", new DoubleData(0.75)));
VariableInfo betaVarInfo = new VariableInfo("Beta", "Value for beta", typeof(DoubleData), VariableKind.In);
betaVarInfo.Local = true;
AddVariableInfo(betaVarInfo);
AddVariable(new Variable("Beta", new DoubleData(0.25)));
}
public static double[] Apply(IRandom random, bool maximization, double[] parent1, double quality1, double[] parent2, double quality2, double alpha, double beta) {
int length = parent1.Length;
double[] result = new double[length];
for (int i = 0; i < length; i++) {
double interval = Math.Abs(parent1[i] - parent2[i]);
if ((maximization && (quality1 > quality2)) || ((!maximization) && (quality1 < quality2))) {
result[i] = SelectFromInterval(random, interval, parent1[i], parent2[i], alpha, beta);
} else {
result[i] = SelectFromInterval(random, interval, parent2[i], parent1[i], alpha, beta);
}
}
return result;
}
private static double SelectFromInterval(IRandom random, double interval, double val1, double val2, double alpha, double beta) {
double resMin = 0;
double resMax = 0;
if (val1 <= val2) {
resMin = val1 - interval * alpha;
resMax = val2 + interval * beta;
} else {
resMin = val2 - interval * beta;
resMax = val1 + interval * alpha;
}
return SelectRandomFromInterval(random, resMin, resMax);
}
private static double SelectRandomFromInterval(IRandom random, double resMin, double resMax) {
return resMin + random.NextDouble() * Math.Abs(resMax - resMin);
}
protected sealed override void Cross(IScope scope, IRandom random, IScope parent1, IScope parent2, IScope child) {
bool maximization = GetVariableValue("Maximization", scope, true).Data;
DoubleArrayData vector1 = parent1.GetVariableValue("RealVector", false);
DoubleData quality1 = parent1.GetVariableValue("Quality", false);
DoubleArrayData vector2 = parent2.GetVariableValue("RealVector", false);
DoubleData quality2 = parent2.GetVariableValue("Quality", false);
double alpha = GetVariableValue("Alpha", scope, true).Data;
double beta = GetVariableValue("Beta", scope, true).Data;
if (vector1.Data.Length != vector2.Data.Length) throw new InvalidOperationException("Cannot apply crossover to real vectors of different length.");
double[] result = Apply(random, maximization, vector1.Data, quality1.Data, vector2.Data, quality2.Data, alpha, beta);
child.AddVariable(new Variable(child.TranslateName("RealVector"), new DoubleArrayData(result)));
}
}
}