#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
namespace HeuristicLab.Random {
public class UniformRandomizer : OperatorBase {
private static int MAX_NUMBER_OF_TRIES = 100;
public override string Description {
get { return "Initializes the value of variable 'Value' to a random value uniformly distributed between 'Min' and 'Max' (exclusive)"; }
}
public double Max {
get { return ((DoubleData)GetVariable("Max").Value).Data; }
set { ((DoubleData)GetVariable("Max").Value).Data = value; }
}
public double Min {
get { return ((DoubleData)GetVariable("Min").Value).Data; }
set { ((DoubleData)GetVariable("Min").Value).Data = value; }
}
public UniformRandomizer() {
AddVariableInfo(new VariableInfo("Value", "The value to manipulate (type is one of: IntData, ConstrainedIntData, DoubleData, ConstrainedDoubleData)", typeof(IObjectData), VariableKind.In));
AddVariableInfo(new VariableInfo("Random", "The random generator to use", typeof(MersenneTwister), VariableKind.In));
AddVariableInfo(new VariableInfo("Min", "Lower bound of the uniform distribution (inclusive)", typeof(DoubleData), VariableKind.None));
GetVariableInfo("Min").Local = true;
AddVariable(new Variable("Min", new DoubleData(0.0)));
AddVariableInfo(new VariableInfo("Max", "Upper bound of the uniform distribution (exclusive)", typeof(DoubleData), VariableKind.None));
GetVariableInfo("Max").Local = true;
AddVariable(new Variable("Max", new DoubleData(1.0)));
}
public override IOperation Apply(IScope scope) {
IObjectData value = GetVariableValue("Value", scope, false);
MersenneTwister mt = GetVariableValue("Random", scope, true);
double min = GetVariableValue("Min", scope, true).Data;
double max = GetVariableValue("Max", scope, true).Data;
RandomizeUniform(value, mt, min, max);
return null;
}
private void RandomizeUniform(IObjectData value, MersenneTwister mt, double min, double max) {
// Dispatch manually based on dynamic type,
// a bit awkward but necessary until we create a better type hierarchy for numeric types (gkronber 15.11.2008).
if (value is DoubleData)
RandomizeUniform((DoubleData)value, mt, min, max);
else if (value is ConstrainedDoubleData)
RandomizeUniform((ConstrainedDoubleData)value, mt, min, max);
else if (value is IntData)
RandomizeUniform((IntData)value, mt, min, max);
else if (value is ConstrainedIntData)
RandomizeUniform((ConstrainedIntData)value, mt, min, max);
else throw new ArgumentException("Can't handle type " + value.GetType().Name);
}
public void RandomizeUniform(DoubleData data, MersenneTwister mt, double min, double max) {
data.Data = mt.NextDouble() * (max - min) + min;
}
public void RandomizeUniform(IntData data, MersenneTwister mt, double min, double max) {
data.Data = (int)Math.Floor(mt.NextDouble() * (max - min) + min);
}
public void RandomizeUniform(ConstrainedDoubleData data, MersenneTwister mt, double min, double max) {
for(int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
double r = mt.NextDouble() * (max - min) + min;
if(IsIntegerConstrained(data)) {
r = Math.Floor(r);
}
if(data.TrySetData(r)) {
return;
}
}
throw new InvalidOperationException("Couldn't find a valid value");
}
public void RandomizeUniform(ConstrainedIntData data, MersenneTwister mt, double min, double max) {
for(int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
int r = (int)Math.Floor(mt.NextDouble() * (max - min) + min);
if(data.TrySetData(r)) {
return;
}
}
throw new InvalidOperationException("Couldn't find a valid value");
}
private bool IsIntegerConstrained(ConstrainedDoubleData data) {
foreach(IConstraint constraint in data.Constraints) {
if(constraint is IsIntegerConstraint) {
return true;
}
}
return false;
}
}
}