#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Core; namespace HeuristicLab.Random { public static class RandomEnumerable { public static IEnumerable SampleRandomNumbers(int maxElement, int count) { return SampleRandomNumbers(Environment.TickCount, 0, maxElement, count); } public static IEnumerable SampleRandomNumbers(int start, int end, int count) { return SampleRandomNumbers(Environment.TickCount, start, end, count); } //algorithm taken from progamming pearls page 127 //IMPORTANT because IEnumerables with yield are used the seed must best be specified to return always //the same sequence of numbers without caching the values. public static IEnumerable SampleRandomNumbers(int seed, int start, int end, int count) { int remaining = end - start; var mt = new FastRandom(seed); for (int i = start; i < end && count > 0; i++) { double probability = mt.NextDouble(); if (probability < ((double)count) / remaining) { count--; yield return i; } remaining--; } } /// /// Chooses one elements from a sequence giving each element an equal chance. /// /// /// Runtime complexity is O(1) for sequences that are of type and /// O(N) for all other. /// /// If the sequence is empty. /// The type of the items to be selected. /// The sequence of elements. /// The random number generator to use, its NextDouble() method must produce values in the range [0;1) /// The number of items to be selected. /// An element that has been chosen randomly from the sequence. public static T SampleRandom(this IEnumerable source, IRandom random) { if (!source.Any()) throw new ArgumentException("sequence is empty.", "source"); return source.SampleRandom(random, 1).First(); } /// /// Chooses elements from a sequence with repetition with equal chances for each element. /// /// /// Runtime complexity is O(count) for sequences that are and /// O(N * count) for all other. No exception is thrown if the sequence is empty. /// /// The method is online. /// /// The type of the items to be selected. /// The sequence of elements. /// The random number generator to use, its NextDouble() method must produce values in the range [0;1) /// The number of items to be selected. /// A sequence of elements that have been chosen randomly. public static IEnumerable SampleRandom(this IEnumerable source, IRandom random, int count) { var listSource = source as IList; if (listSource != null) { while (count > 0) { yield return listSource[random.Next(listSource.Count)]; count--; } } else { while (count > 0) { var enumerator = source.GetEnumerator(); enumerator.MoveNext(); T selectedItem = enumerator.Current; int counter = 1; while (enumerator.MoveNext()) { counter++; if (counter * random.NextDouble() < 1.0) selectedItem = enumerator.Current; } yield return selectedItem; count--; } } } /// /// Chooses elements from a sequence without repetition with equal chances for each element. /// The items are returned in the same order as they appear in the sequence. /// /// /// Runtime complexity is O(N) for all sequences. /// No exception is thrown if the sequence contains less items than there are to be selected. /// /// The method is online. /// /// The type of the items to be selected. /// The sequence of elements. /// The random number generator to use, its NextDouble() method must produce values in the range [0;1) /// The number of items to be selected. /// Optional parameter specifying the number of elements in the source enumerations /// A sequence of elements that have been chosen randomly. public static IEnumerable SampleRandomWithoutRepetition(this IEnumerable source, IRandom random, int count, int sourceCount = -1) { if (sourceCount == -1) sourceCount = source.Count(); int remaining = sourceCount; foreach (var item in source) { if (random.NextDouble() * remaining < count) { count--; yield return item; if (count <= 0) break; } remaining--; } } /// /// Chooses elements out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional /// to the . /// /// /// In case both and are false values must be > 0, /// otherwise an InvalidOperationException is thrown. /// /// The method internally holds two arrays: One that is the sequence itself and another one for the values. /// /// The type of the items to be selected. /// The sequence of elements. /// The random number generator to use, its NextDouble() method must produce values in the range [0;1) /// The number of items to be selected. /// The weight values for the items. /// Whether to scale the proportional values or not. /// Determines whether to choose proportionally (false) or inverse-proportionally (true). /// A sequence of selected items. The sequence might contain the same item more than once. public static IEnumerable SampleProportional(this IEnumerable source, IRandom random, int count, IEnumerable weights, bool windowing = true, bool inverseProportional = false) { return source.SampleProportional(random, weights, windowing, inverseProportional).Take(count); } /// /// Same as , but chooses an item exactly once. /// /// /// In case both and are false values must be > 0, /// otherwise an InvalidOperationException is thrown. /// /// The method internally holds two arrays: One that is the sequence itself and another one for the values. /// /// The type of the items to be selected. /// The sequence of elements. /// The random number generator to use, its NextDouble() method must produce values in the range [0;1) /// The number of items to be selected. /// The weight values for the items. /// Whether to scale the proportional values or not. /// Determines whether to choose proportionally (true) or inverse-proportionally (false). /// A sequence of selected items. public static IEnumerable SampleProportionalWithoutRepetition(this IEnumerable source, IRandom random, int count, IEnumerable weights, bool windowing = true, bool inverseProportional = false) { return source.SampleProportionalWithoutRepetition(random, weights, windowing, inverseProportional).Take(count); } #region Proportional Helpers private static IEnumerable SampleProportional(this IEnumerable source, IRandom random, IEnumerable weights, bool windowing, bool inverseProportional) { var sourceArray = source.ToArray(); var valueArray = PrepareProportional(sourceArray, weights, windowing, inverseProportional); double total = valueArray.Sum(); while (true) { int index = 0; double ball = valueArray[index], sum = random.NextDouble() * total; while (ball < sum) ball += valueArray[++index]; yield return sourceArray[index]; } } private static IEnumerable SampleProportionalWithoutRepetition(this IEnumerable source, IRandom random, IEnumerable weights, bool windowing, bool inverseProportional) { var sourceArray = source.ToArray(); var valueArray = PrepareProportional(sourceArray, weights, windowing, inverseProportional); double total = valueArray.Sum(); HashSet chosenIndices = new HashSet(); while (chosenIndices.Count < sourceArray.Length) { int index = -1; double ball = 0, sum = random.NextDouble() * total; while (ball < sum) { index++; if (!chosenIndices.Contains(index)) ball += valueArray[index]; } index = index >= 0 ? index : Enumerable.Range(0, sourceArray.Length).First(x => !chosenIndices.Contains(x)); yield return sourceArray[index]; chosenIndices.Add(index); total -= valueArray[index]; } } private static double[] PrepareProportional(IList sourceArray, IEnumerable weights, bool windowing, bool inverseProportional) { double maxValue = double.MinValue, minValue = double.MaxValue; double[] valueArray = new double[sourceArray.Count]; var weightsEnum = weights.GetEnumerator(); for (int i = 0; i < sourceArray.Count && weightsEnum.MoveNext(); i++) { valueArray[i] = weightsEnum.Current; if (valueArray[i] > maxValue) maxValue = valueArray[i]; if (valueArray[i] < minValue) minValue = valueArray[i]; } if (minValue == maxValue) { // all values are equal for (int i = 0; i < sourceArray.Count; i++) { valueArray[i] = 1.0; } } else { if (windowing) { if (inverseProportional) InverseProportionalScale(valueArray, maxValue); else ProportionalScale(valueArray, minValue); } else { if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0."); if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue); } } return valueArray; } private static void ProportionalScale(double[] values, double minValue) { for (int i = 0; i < values.Length; i++) { values[i] = values[i] - minValue; } } private static void InverseProportionalScale(double[] values, double maxValue) { for (int i = 0; i < values.Length; i++) { values[i] = maxValue - values[i]; } } #endregion /// /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle. /// /// /// Note that the source enumerable is transformed into an array. /// /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm. /// /// The type of the items that are to be shuffled. /// The enumerable that contains the items. /// The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n). /// An enumerable with the elements shuffled. public static IEnumerable Shuffle(this IEnumerable source, IRandom random) { T[] elements = source.ToArray(); for (int i = elements.Length - 1; i > 0; i--) { // Swap element "i" with a random earlier element (including itself) int swapIndex = random.Next(i + 1); yield return elements[swapIndex]; elements[swapIndex] = elements[i]; // we don't actually perform the swap, we can forget about the // swapped element because we already returned it. } yield return elements[0]; } } }