1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Random {
|
---|
28 | public static class RandomEnumerable {
|
---|
29 | public static IEnumerable<int> SampleRandomNumbers(int maxElement, int count) {
|
---|
30 | return SampleRandomNumbers(Environment.TickCount, 0, maxElement, count);
|
---|
31 | }
|
---|
32 |
|
---|
33 | public static IEnumerable<int> SampleRandomNumbers(int start, int end, int count) {
|
---|
34 | return SampleRandomNumbers(Environment.TickCount, start, end, count);
|
---|
35 | }
|
---|
36 |
|
---|
37 | //algorithm taken from progamming pearls page 127
|
---|
38 | //IMPORTANT because IEnumerables with yield are used the seed must best be specified to return always
|
---|
39 | //the same sequence of numbers without caching the values.
|
---|
40 | public static IEnumerable<int> SampleRandomNumbers(int seed, int start, int end, int count) {
|
---|
41 | int remaining = end - start;
|
---|
42 | var mt = new FastRandom(seed);
|
---|
43 | for (int i = start; i < end && count > 0; i++) {
|
---|
44 | double probability = mt.NextDouble();
|
---|
45 | if (probability < ((double)count) / remaining) {
|
---|
46 | count--;
|
---|
47 | yield return i;
|
---|
48 | }
|
---|
49 | remaining--;
|
---|
50 | }
|
---|
51 | }
|
---|
52 |
|
---|
53 | /// <summary>
|
---|
54 | /// Chooses one elements from a sequence giving each element an equal chance.
|
---|
55 | /// </summary>
|
---|
56 | /// <remarks>
|
---|
57 | /// Runtime complexity is O(1) for sequences that are of type <see cref="IList{T}"/> and
|
---|
58 | /// O(N) for all other.
|
---|
59 | /// </remarks>
|
---|
60 | /// <exception cref="ArgumentException">If the sequence is empty.</exception>
|
---|
61 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
62 | /// <param name="source">The sequence of elements.</param>
|
---|
63 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
64 | /// <param name="count">The number of items to be selected.</param>
|
---|
65 | /// <returns>An element that has been chosen randomly from the sequence.</returns>
|
---|
66 | public static T SampleRandom<T>(this IEnumerable<T> source, IRandom random) {
|
---|
67 | if (!source.Any()) throw new ArgumentException("sequence is empty.", "source");
|
---|
68 | return source.SampleRandom(random, 1).First();
|
---|
69 | }
|
---|
70 |
|
---|
71 | /// <summary>
|
---|
72 | /// Chooses <paramref name="count"/> elements from a sequence with repetition with equal chances for each element.
|
---|
73 | /// </summary>
|
---|
74 | /// <remarks>
|
---|
75 | /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and
|
---|
76 | /// O(N * count) for all other. No exception is thrown if the sequence is empty.
|
---|
77 | ///
|
---|
78 | /// The method is online.
|
---|
79 | /// </remarks>
|
---|
80 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
81 | /// <param name="source">The sequence of elements.</param>
|
---|
82 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
83 | /// <param name="count">The number of items to be selected.</param>
|
---|
84 | /// <returns>A sequence of elements that have been chosen randomly.</returns>
|
---|
85 | public static IEnumerable<T> SampleRandom<T>(this IEnumerable<T> source, IRandom random, int count) {
|
---|
86 | var listSource = source as IList<T>;
|
---|
87 | if (listSource != null) {
|
---|
88 | while (count > 0) {
|
---|
89 | yield return listSource[random.Next(listSource.Count)];
|
---|
90 | count--;
|
---|
91 | }
|
---|
92 | } else {
|
---|
93 | while (count > 0) {
|
---|
94 | var enumerator = source.GetEnumerator();
|
---|
95 | enumerator.MoveNext();
|
---|
96 | T selectedItem = enumerator.Current;
|
---|
97 | int counter = 1;
|
---|
98 | while (enumerator.MoveNext()) {
|
---|
99 | counter++;
|
---|
100 | if (counter * random.NextDouble() < 1.0)
|
---|
101 | selectedItem = enumerator.Current;
|
---|
102 | }
|
---|
103 | yield return selectedItem;
|
---|
104 | count--;
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 | /// <summary>
|
---|
110 | /// Chooses <paramref name="count"/> elements from a sequence without repetition with equal chances for each element.
|
---|
111 | /// The items are returned in the same order as they appear in the sequence.
|
---|
112 | /// </summary>
|
---|
113 | /// <remarks>
|
---|
114 | /// Runtime complexity is O(N) for all sequences.
|
---|
115 | /// No exception is thrown if the sequence contains less items than there are to be selected.
|
---|
116 | ///
|
---|
117 | /// The method is online.
|
---|
118 | /// </remarks>
|
---|
119 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
120 | /// <param name="source">The sequence of elements.</param>
|
---|
121 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
122 | /// <param name="count">The number of items to be selected.</param>
|
---|
123 | /// <returns>A sequence of elements that have been chosen randomly.</returns>
|
---|
124 | public static IEnumerable<T> SampleRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count) {
|
---|
125 | int remaining = source.Count();
|
---|
126 | foreach (var item in source) {
|
---|
127 | if (random.NextDouble() * remaining < count) {
|
---|
128 | count--;
|
---|
129 | yield return item;
|
---|
130 | if (count <= 0) break;
|
---|
131 | }
|
---|
132 | remaining--;
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | /// <summary>
|
---|
137 | /// Chooses elements out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional
|
---|
138 | /// to the <paramref name="weights"/>.
|
---|
139 | /// </summary>
|
---|
140 | /// <remarks>
|
---|
141 | /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0,
|
---|
142 | /// otherwise an InvalidOperationException is thrown.
|
---|
143 | ///
|
---|
144 | /// The method internally holds two arrays: One that is the sequence itself and another one for the values.
|
---|
145 | /// </remarks>
|
---|
146 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
147 | /// <param name="source">The sequence of elements.</param>
|
---|
148 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
149 | /// <param name="count">The number of items to be selected.</param>
|
---|
150 | /// <param name="weights">The weight values for the items.</param>
|
---|
151 | /// <param name="windowing">Whether to scale the proportional values or not.</param>
|
---|
152 | /// <param name="inverseProportional">Determines whether to choose proportionally (false) or inverse-proportionally (true).</param>
|
---|
153 | /// <returns>A sequence of selected items. The sequence might contain the same item more than once.</returns>
|
---|
154 | public static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) {
|
---|
155 | return source.SampleProportional(random, weights, windowing, inverseProportional).Take(count);
|
---|
156 | }
|
---|
157 |
|
---|
158 | /// <summary>
|
---|
159 | /// Same as <seealso cref="SampleProportional<T>"/>, but chooses an item exactly once.
|
---|
160 | /// </summary>
|
---|
161 | /// <remarks>
|
---|
162 | /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0,
|
---|
163 | /// otherwise an InvalidOperationException is thrown.
|
---|
164 | ///
|
---|
165 | /// The method internally holds two arrays: One that is the sequence itself and another one for the values.
|
---|
166 | /// </remarks>
|
---|
167 | /// <typeparam name="T">The type of the items to be selected.</typeparam>
|
---|
168 | /// <param name="source">The sequence of elements.</param>
|
---|
169 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>
|
---|
170 | /// <param name="count">The number of items to be selected.</param>
|
---|
171 | /// <param name="weights">The weight values for the items.</param>
|
---|
172 | /// <param name="windowing">Whether to scale the proportional values or not.</param>
|
---|
173 | /// <param name="maximization">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param>
|
---|
174 | /// <returns>A sequence of selected items.</returns>
|
---|
175 | public static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) {
|
---|
176 | return source.SampleProportionalWithoutRepetition(random, weights, windowing, inverseProportional).Take(count);
|
---|
177 | }
|
---|
178 | #region Proportional Helpers
|
---|
179 | private static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) {
|
---|
180 | var sourceArray = source.ToArray();
|
---|
181 | var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional);
|
---|
182 | double total = valueArray.Sum();
|
---|
183 |
|
---|
184 | while (true) {
|
---|
185 | int index = 0;
|
---|
186 | double ball = valueArray[index], sum = random.NextDouble() * total;
|
---|
187 | while (ball < sum)
|
---|
188 | ball += valueArray[++index];
|
---|
189 | yield return sourceArray[index];
|
---|
190 | }
|
---|
191 | }
|
---|
192 | private static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) {
|
---|
193 | var sourceArray = source.ToArray();
|
---|
194 | var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional);
|
---|
195 | double total = valueArray.Sum();
|
---|
196 |
|
---|
197 | HashSet<int> chosenIndices = new HashSet<int>();
|
---|
198 | while (chosenIndices.Count < sourceArray.Length) {
|
---|
199 | int index = 0;
|
---|
200 | double ball = valueArray[index], sum = random.NextDouble() * total;
|
---|
201 | while (ball < sum) {
|
---|
202 | index++;
|
---|
203 | if (!chosenIndices.Contains(index))
|
---|
204 | ball += valueArray[++index];
|
---|
205 | }
|
---|
206 | yield return sourceArray[index];
|
---|
207 | chosenIndices.Add(index);
|
---|
208 | total -= valueArray[index];
|
---|
209 | }
|
---|
210 | }
|
---|
211 | private static double[] PrepareProportional<T>(IList<T> sourceArray, IEnumerable<double> weights, bool windowing, bool inverseProportional) {
|
---|
212 | double maxValue = double.MinValue, minValue = double.MaxValue;
|
---|
213 | double[] valueArray = new double[sourceArray.Count];
|
---|
214 |
|
---|
215 | var weightsEnum = weights.GetEnumerator();
|
---|
216 | for (int i = 0; i < sourceArray.Count && weightsEnum.MoveNext(); i++) {
|
---|
217 | valueArray[i] = weightsEnum.Current;
|
---|
218 | if (valueArray[i] > maxValue) maxValue = valueArray[i];
|
---|
219 | if (valueArray[i] < minValue) minValue = valueArray[i];
|
---|
220 | }
|
---|
221 | if (minValue == maxValue) { // all values are equal
|
---|
222 | for (int i = 0; i < sourceArray.Count; i++) {
|
---|
223 | valueArray[i] = 1.0;
|
---|
224 | }
|
---|
225 | } else {
|
---|
226 | if (windowing) {
|
---|
227 | if (inverseProportional) InverseProportionalScale(valueArray, minValue);
|
---|
228 | else ProportionalScale(valueArray, maxValue);
|
---|
229 | } else {
|
---|
230 | if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0.");
|
---|
231 | if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue);
|
---|
232 | }
|
---|
233 | }
|
---|
234 | return valueArray;
|
---|
235 | }
|
---|
236 | private static void ProportionalScale(double[] values, double minValue) {
|
---|
237 | for (int i = 0; i < values.Length; i++) {
|
---|
238 | values[i] = values[i] - minValue;
|
---|
239 | }
|
---|
240 | }
|
---|
241 | private static void InverseProportionalScale(double[] values, double maxValue) {
|
---|
242 | for (int i = 0; i < values.Length; i++) {
|
---|
243 | values[i] = maxValue - values[i];
|
---|
244 | }
|
---|
245 | }
|
---|
246 | #endregion
|
---|
247 |
|
---|
248 | /// <summary>
|
---|
249 | /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle.
|
---|
250 | /// </summary>
|
---|
251 | /// <remarks>
|
---|
252 | /// Note that the source enumerable is transformed into an array.
|
---|
253 | ///
|
---|
254 | /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm.
|
---|
255 | /// </remarks>
|
---|
256 | /// <typeparam name="T">The type of the items that are to be shuffled.</typeparam>
|
---|
257 | /// <param name="source">The enumerable that contains the items.</param>
|
---|
258 | /// <param name="random">The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n).</param>
|
---|
259 | /// <returns>An enumerable with the elements shuffled.</returns>
|
---|
260 | public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, IRandom random) {
|
---|
261 | T[] elements = source.ToArray();
|
---|
262 | for (int i = elements.Length - 1; i > 0; i--) {
|
---|
263 | // Swap element "i" with a random earlier element (including itself)
|
---|
264 | int swapIndex = random.Next(i + 1);
|
---|
265 | yield return elements[swapIndex];
|
---|
266 | elements[swapIndex] = elements[i];
|
---|
267 | // we don't actually perform the swap, we can forget about the
|
---|
268 | // swapped element because we already returned it.
|
---|
269 | }
|
---|
270 | yield return elements[0];
|
---|
271 | }
|
---|
272 | }
|
---|
273 | }
|
---|