#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.Instances;
using HeuristicLab.Problems.VehicleRouting.Interfaces;
using HeuristicLab.Problems.VehicleRouting.Interpreters;
using HeuristicLab.Problems.VehicleRouting.ProblemInstances;
using HeuristicLab.Problems.VehicleRouting.Variants;
namespace HeuristicLab.Problems.VehicleRouting {
[Item("Vehicle Routing Problem", "Represents a Vehicle Routing Problem.")]
[Creatable("Problems")]
[StorableClass]
public sealed class VehicleRoutingProblem : Problem, ISingleObjectiveHeuristicOptimizationProblem, IStorableContent, IProblemInstanceConsumer {
public string Filename { get; set; }
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Type; }
}
#region Parameter Properties
public ValueParameter MaximizationParameter {
get { return (ValueParameter)Parameters["Maximization"]; }
}
IParameter ISingleObjectiveHeuristicOptimizationProblem.MaximizationParameter {
get { return MaximizationParameter; }
}
public ValueParameter ProblemInstanceParameter {
get { return (ValueParameter)Parameters["ProblemInstance"]; }
}
public OptionalValueParameter BestKnownQualityParameter {
get { return (OptionalValueParameter)Parameters["BestKnownQuality"]; }
}
IParameter ISingleObjectiveHeuristicOptimizationProblem.BestKnownQualityParameter {
get { return BestKnownQualityParameter; }
}
public OptionalValueParameter BestKnownSolutionParameter {
get { return (OptionalValueParameter)Parameters["BestKnownSolution"]; }
}
public IConstrainedValueParameter SolutionCreatorParameter {
get { return (IConstrainedValueParameter)Parameters["SolutionCreator"]; }
}
IParameter IHeuristicOptimizationProblem.SolutionCreatorParameter {
get { return SolutionCreatorParameter; }
}
public IValueParameter EvaluatorParameter {
get { return (IValueParameter)Parameters["Evaluator"]; }
}
IParameter IHeuristicOptimizationProblem.EvaluatorParameter {
get { return EvaluatorParameter; }
}
#endregion
#region Properties
public IVRPProblemInstance ProblemInstance {
get { return ProblemInstanceParameter.Value; }
set { ProblemInstanceParameter.Value = value; }
}
public VRPSolution BestKnownSolution {
get { return BestKnownSolutionParameter.Value; }
set { BestKnownSolutionParameter.Value = value; }
}
public DoubleValue BestKnownQuality {
get { return BestKnownQualityParameter.Value; }
set { BestKnownQualityParameter.Value = value; }
}
public ISingleObjectiveEvaluator Evaluator {
get { return EvaluatorParameter.Value; }
}
IEvaluator IHeuristicOptimizationProblem.Evaluator {
get { return this.Evaluator; }
}
ISolutionCreator IHeuristicOptimizationProblem.SolutionCreator {
get { return SolutionCreatorParameter.Value; }
}
public IVRPCreator SolutionCreator {
get { return SolutionCreatorParameter.Value; }
set { SolutionCreatorParameter.Value = value; }
}
#endregion
[StorableConstructor]
private VehicleRoutingProblem(bool deserializing) : base(deserializing) { }
public VehicleRoutingProblem()
: base() {
Parameters.Add(new ValueParameter("Maximization", "Set to false as the Vehicle Routing Problem is a minimization problem.", new BoolValue(false)));
Parameters.Add(new ValueParameter("ProblemInstance", "The VRP problem instance"));
Parameters.Add(new OptionalValueParameter("BestKnownQuality", "The quality of the best known solution of this VRP instance."));
Parameters.Add(new OptionalValueParameter("BestKnownSolution", "The best known solution of this VRP instance."));
Parameters.Add(new ConstrainedValueParameter("SolutionCreator", "The operator which should be used to create new VRP solutions."));
Parameters.Add(new ValueParameter("Evaluator", "The operator which should be used to evaluate VRP solutions."));
EvaluatorParameter.Hidden = true;
InitializeRandomVRPInstance();
InitializeOperators();
AttachEventHandlers();
AttachProblemInstanceEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) {
cloner.Clone(ProblemInstance);
return new VehicleRoutingProblem(this, cloner);
}
private VehicleRoutingProblem(VehicleRoutingProblem original, Cloner cloner)
: base(original, cloner) {
this.AttachEventHandlers();
}
#region Events
public event EventHandler SolutionCreatorChanged;
private void OnSolutionCreatorChanged() {
EventHandler handler = SolutionCreatorChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
public event EventHandler EvaluatorChanged;
private void OnEvaluatorChanged() {
EventHandler handler = EvaluatorChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
#endregion
#region Helpers
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
AttachEventHandlers();
AttachProblemInstanceEventHandlers();
}
[Storable(Name = "operators", AllowOneWay = true)]
private List StorableOperators {
set { Operators.AddRange(value); }
}
private void AttachEventHandlers() {
ProblemInstanceParameter.ValueChanged += new EventHandler(ProblemInstanceParameter_ValueChanged);
BestKnownSolutionParameter.ValueChanged += new EventHandler(BestKnownSolutionParameter_ValueChanged);
EvaluatorParameter.ValueChanged += new EventHandler(EvaluatorParameter_ValueChanged);
SolutionCreatorParameter.ValueChanged += new EventHandler(SolutionCreatorParameter_ValueChanged);
}
private void AttachProblemInstanceEventHandlers() {
var solutionCreatorParameter = SolutionCreatorParameter as ConstrainedValueParameter;
solutionCreatorParameter.ValidValues.Clear();
if (ProblemInstance != null) {
EvaluatorParameter.Value = ProblemInstance.SolutionEvaluator;
IVRPCreator defaultCreator = null;
foreach (IVRPCreator creator in Operators.Where(o => o is IVRPCreator)) {
solutionCreatorParameter.ValidValues.Add(creator);
if (creator is Encodings.Alba.RandomCreator)
defaultCreator = creator;
}
if (defaultCreator != null)
solutionCreatorParameter.Value = defaultCreator;
ProblemInstance.EvaluationChanged += new EventHandler(ProblemInstance_EvaluationChanged);
}
}
private void EvalBestKnownSolution() {
if (BestKnownSolution != null) {
//call evaluator
BestKnownQuality = new DoubleValue(ProblemInstance.Evaluate(BestKnownSolution.Solution).Quality);
BestKnownSolution.Quality = BestKnownQuality;
} else {
BestKnownQuality = null;
}
}
void BestKnownSolutionParameter_ValueChanged(object sender, EventArgs e) {
EvalBestKnownSolution();
}
void ProblemInstance_EvaluationChanged(object sender, EventArgs e) {
EvaluatorParameter.Value = ProblemInstance.SolutionEvaluator;
EvalBestKnownSolution();
}
void ProblemInstanceParameter_ValueChanged(object sender, EventArgs e) {
InitializeOperators();
AttachProblemInstanceEventHandlers();
OnSolutionCreatorChanged();
OnEvaluatorChanged();
OnOperatorsChanged();
}
public void SetProblemInstance(IVRPProblemInstance instance) {
ProblemInstanceParameter.ValueChanged -= new EventHandler(ProblemInstanceParameter_ValueChanged);
ProblemInstance = instance;
AttachProblemInstanceEventHandlers();
OnSolutionCreatorChanged();
OnEvaluatorChanged();
ProblemInstanceParameter.ValueChanged += new EventHandler(ProblemInstanceParameter_ValueChanged);
}
private void SolutionCreatorParameter_ValueChanged(object sender, EventArgs e) {
OnSolutionCreatorChanged();
}
private void EvaluatorParameter_ValueChanged(object sender, EventArgs e) {
if (ProblemInstance != null)
ProblemInstance.SolutionEvaluator = EvaluatorParameter.Value;
OnEvaluatorChanged();
}
private void InitializeOperators() {
Operators.Clear();
if (ProblemInstance != null) {
Operators.AddRange(
ProblemInstance.Operators.Concat(
ApplicationManager.Manager.GetInstances().Cast()).OrderBy(op => op.Name));
}
ParameterizeOperators();
}
private void ParameterizeOperators() {
foreach (IOperator op in Operators.OfType()) {
if (op is IMultiVRPOperator) {
(op as IMultiVRPOperator).SetOperators(Operators.OfType());
}
}
}
#endregion
private void InitializeRandomVRPInstance() {
System.Random rand = new System.Random();
CVRPTWProblemInstance problem = new CVRPTWProblemInstance();
int cities = 100;
problem.Coordinates = new DoubleMatrix(cities + 1, 2);
problem.Demand = new DoubleArray(cities + 1);
problem.DueTime = new DoubleArray(cities + 1);
problem.ReadyTime = new DoubleArray(cities + 1);
problem.ServiceTime = new DoubleArray(cities + 1);
problem.Vehicles.Value = 100;
problem.Capacity.Value = 200;
for (int i = 0; i <= cities; i++) {
problem.Coordinates[i, 0] = rand.Next(0, 100);
problem.Coordinates[i, 1] = rand.Next(0, 100);
if (i == 0) {
problem.Demand[i] = 0;
problem.DueTime[i] = Int16.MaxValue;
problem.ReadyTime[i] = 0;
problem.ServiceTime[i] = 0;
} else {
problem.Demand[i] = rand.Next(10, 50);
problem.DueTime[i] = rand.Next((int)Math.Ceiling(problem.GetDistance(0, i, null)), 1200);
problem.ReadyTime[i] = problem.DueTime[i] - rand.Next(0, 100);
problem.ServiceTime[i] = 90;
}
}
this.ProblemInstance = problem;
}
public void ImportSolution(string solutionFileName) {
SolutionParser parser = new SolutionParser(solutionFileName);
parser.Parse();
HeuristicLab.Problems.VehicleRouting.Encodings.Potvin.PotvinEncoding encoding = new Encodings.Potvin.PotvinEncoding(ProblemInstance);
int cities = 0;
foreach (List route in parser.Routes) {
Tour tour = new Tour();
tour.Stops.AddRange(route);
cities += tour.Stops.Count;
encoding.Tours.Add(tour);
}
if (cities != ProblemInstance.Coordinates.Rows - 1)
ErrorHandling.ShowErrorDialog(new Exception("The optimal solution does not seem to correspond with the problem data"));
else {
VRPSolution solution = new VRPSolution(ProblemInstance, encoding, new DoubleValue(0));
BestKnownSolutionParameter.Value = solution;
}
}
public void Load(IVRPData data) {
Type interpreterType = typeof(IVRPDataInterpreter<>).MakeGenericType(data.GetType());
var interpreters = ApplicationManager.Manager.GetInstances(interpreterType);
if (interpreters.Count() > 0) {
IVRPDataInterpreter interpreter = interpreters.First() as IVRPDataInterpreter;
VRPInstanceDescription instance = interpreter.Interpret(data);
Name = instance.Name;
Description = instance.Description;
if (ProblemInstance != null && instance.ProblemInstance != null &&
instance.ProblemInstance.GetType() == ProblemInstance.GetType())
SetProblemInstance(instance.ProblemInstance);
else
ProblemInstance = instance.ProblemInstance;
OnReset();
BestKnownQuality = null;
BestKnownSolution = null;
if (instance.BestKnownQuality != null) {
BestKnownQuality = new DoubleValue((double)instance.BestKnownQuality);
}
if (instance.BestKnownSolution != null) {
VRPSolution solution = new VRPSolution(ProblemInstance, instance.BestKnownSolution, new DoubleValue(0));
BestKnownSolution = solution;
}
} else {
throw new Exception("Cannot find an interpreter for " + data.GetType());
}
}
}
}