#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.QuadraticAssignment { [Item("QAPExhaustiveSwap2LocalImprovement", "Takes a solution and finds the local optimum with respect to the swap2 neighborhood by decending along the steepest gradient.")] [StorableClass] public class QAPExhaustiveSwap2LocalImprovement : SingleSuccessorOperator, ILocalImprovementOperator { public Type ProblemType { get { return typeof(QuadraticAssignmentProblem); } } [Storable] private QuadraticAssignmentProblem problem; public IProblem Problem { get { return problem; } set { problem = (QuadraticAssignmentProblem)value; } } public IValueLookupParameter MaximumIterationsParameter { get { return (IValueLookupParameter)Parameters["MaximumIterations"]; } } public ILookupParameter EvaluatedSolutionsParameter { get { return (ILookupParameter)Parameters["EvaluatedSolutions"]; } } public ILookupParameter ResultsParameter { get { return (ILookupParameter)Parameters["Results"]; } } public ILookupParameter AssignmentParameter { get { return (ILookupParameter)Parameters["Assignment"]; } } public ILookupParameter QualityParameter { get { return (ILookupParameter)Parameters["Quality"]; } } public ILookupParameter MaximizationParameter { get { return (ILookupParameter)Parameters["Maximization"]; } } public ILookupParameter WeightsParameter { get { return (ILookupParameter)Parameters["Weights"]; } } public ILookupParameter DistancesParameter { get { return (ILookupParameter)Parameters["Distances"]; } } [StorableConstructor] protected QAPExhaustiveSwap2LocalImprovement(bool deserializing) : base(deserializing) { } protected QAPExhaustiveSwap2LocalImprovement(QAPExhaustiveSwap2LocalImprovement original, Cloner cloner) : base(original, cloner) { this.problem = cloner.Clone(original.problem); } public QAPExhaustiveSwap2LocalImprovement() : base() { Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum amount of iterations that should be performed (note that this operator will abort earlier when a local optimum is reached.", new IntValue(10000))); Parameters.Add(new LookupParameter("EvaluatedSolutions", "The amount of evaluated solutions (here a move is counted only as 4/n evaluated solutions with n being the length of the permutation).")); Parameters.Add(new LookupParameter("Results", "The collection where to store results.")); Parameters.Add(new LookupParameter("Assignment", "The permutation that is to be locally optimized.")); Parameters.Add(new LookupParameter("Quality", "The quality value of the assignment.")); Parameters.Add(new LookupParameter("Maximization", "True if the problem should be maximized or minimized.")); Parameters.Add(new LookupParameter("Weights", "The weights matrix.")); Parameters.Add(new LookupParameter("Distances", "The distances matrix.")); } public override IDeepCloneable Clone(Cloner cloner) { return new QAPExhaustiveSwap2LocalImprovement(this, cloner); } public override IOperation Apply() { int maxIterations = MaximumIterationsParameter.ActualValue.Value; Permutation assignment = AssignmentParameter.ActualValue; bool maximization = MaximizationParameter.ActualValue.Value; DoubleMatrix weights = WeightsParameter.ActualValue; DoubleMatrix distances = DistancesParameter.ActualValue; double evaluatedSolutions = 0.0; double evalSolPerMove = 4.0 / assignment.Length; for (int i = 0; i < maxIterations; i++) { Swap2Move bestMove = null; double bestQuality = 0; // we have to make an improvement, so 0 is the baseline foreach (Swap2Move move in ExhaustiveSwap2MoveGenerator.Generate(assignment)) { double moveQuality = QAPSwap2MoveEvaluator.Apply(assignment, move, weights, distances); evaluatedSolutions += evalSolPerMove; if (maximization && moveQuality > bestQuality || !maximization && moveQuality < bestQuality) { bestQuality = moveQuality; bestMove = move; } } if (bestMove == null) break; Swap2Manipulator.Apply(assignment, bestMove.Index1, bestMove.Index2); QualityParameter.ActualValue.Value += bestQuality; } EvaluatedSolutionsParameter.ActualValue.Value += (int)Math.Ceiling(evaluatedSolutions); return base.Apply(); } } }