#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.QuadraticAssignment {
[Item("QAPExhaustiveSwap2LocalImprovement", "Takes a solution and finds the local optimum with respect to the swap2 neighborhood by decending along the steepest gradient.")]
[StorableClass]
public class QAPExhaustiveSwap2LocalImprovement : SingleSuccessorOperator, ILocalImprovementOperator {
public Type ProblemType {
get { return typeof(QuadraticAssignmentProblem); }
}
[Storable]
private QuadraticAssignmentProblem problem;
public IProblem Problem {
get { return problem; }
set { problem = (QuadraticAssignmentProblem)value; }
}
public IValueLookupParameter MaximumIterationsParameter {
get { return (IValueLookupParameter)Parameters["MaximumIterations"]; }
}
public ILookupParameter EvaluatedSolutionsParameter {
get { return (ILookupParameter)Parameters["EvaluatedSolutions"]; }
}
public ILookupParameter ResultsParameter {
get { return (ILookupParameter)Parameters["Results"]; }
}
public ILookupParameter AssignmentParameter {
get { return (ILookupParameter)Parameters["Assignment"]; }
}
public ILookupParameter QualityParameter {
get { return (ILookupParameter)Parameters["Quality"]; }
}
public ILookupParameter MaximizationParameter {
get { return (ILookupParameter)Parameters["Maximization"]; }
}
public ILookupParameter WeightsParameter {
get { return (ILookupParameter)Parameters["Weights"]; }
}
public ILookupParameter DistancesParameter {
get { return (ILookupParameter)Parameters["Distances"]; }
}
[StorableConstructor]
protected QAPExhaustiveSwap2LocalImprovement(bool deserializing) : base(deserializing) { }
protected QAPExhaustiveSwap2LocalImprovement(QAPExhaustiveSwap2LocalImprovement original, Cloner cloner)
: base(original, cloner) {
this.problem = cloner.Clone(original.problem);
}
public QAPExhaustiveSwap2LocalImprovement()
: base() {
Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum amount of iterations that should be performed (note that this operator will abort earlier when a local optimum is reached.", new IntValue(10000)));
Parameters.Add(new LookupParameter("EvaluatedSolutions", "The amount of evaluated solutions (here a move is counted only as 4/n evaluated solutions with n being the length of the permutation)."));
Parameters.Add(new LookupParameter("Results", "The collection where to store results."));
Parameters.Add(new LookupParameter("Assignment", "The permutation that is to be locally optimized."));
Parameters.Add(new LookupParameter("Quality", "The quality value of the assignment."));
Parameters.Add(new LookupParameter("Maximization", "True if the problem should be maximized or minimized."));
Parameters.Add(new LookupParameter("Weights", "The weights matrix."));
Parameters.Add(new LookupParameter("Distances", "The distances matrix."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new QAPExhaustiveSwap2LocalImprovement(this, cloner);
}
public override IOperation Apply() {
int maxIterations = MaximumIterationsParameter.ActualValue.Value;
Permutation assignment = AssignmentParameter.ActualValue;
bool maximization = MaximizationParameter.ActualValue.Value;
DoubleMatrix weights = WeightsParameter.ActualValue;
DoubleMatrix distances = DistancesParameter.ActualValue;
double evaluatedSolutions = 0.0;
double evalSolPerMove = 4.0 / assignment.Length;
for (int i = 0; i < maxIterations; i++) {
Swap2Move bestMove = null;
double bestQuality = 0; // we have to make an improvement, so 0 is the baseline
foreach (Swap2Move move in ExhaustiveSwap2MoveGenerator.Generate(assignment)) {
double moveQuality = QAPSwap2MoveEvaluator.Apply(assignment, move, weights, distances);
evaluatedSolutions += evalSolPerMove;
if (maximization && moveQuality > bestQuality
|| !maximization && moveQuality < bestQuality) {
bestQuality = moveQuality;
bestMove = move;
}
}
if (bestMove == null) break;
Swap2Manipulator.Apply(assignment, bestMove.Index1, bestMove.Index2);
QualityParameter.ActualValue.Value += bestQuality;
}
EvaluatedSolutionsParameter.ActualValue.Value += (int)Math.Ceiling(evaluatedSolutions);
return base.Apply();
}
}
}