#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.QuadraticAssignment.Algorithms {
[Item("RobustTabooSearchOperator", "Performs an iteration of the robust taboo search algorithm as descrbied in Taillard 1991.")]
[StorableClass]
public sealed class RobustTabooSeachOperator : SingleSuccessorOperator, IIterationBasedOperator, IStochasticOperator {
#region Parameter Properties
public ILookupParameter IterationsParameter {
get { return (ILookupParameter)Parameters["Iterations"]; }
}
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
public ILookupParameter PermutationParameter {
get { return (ILookupParameter)Parameters["Permutation"]; }
}
public ILookupParameter WeightsParameter {
get { return (ILookupParameter)Parameters["Weights"]; }
}
public ILookupParameter DistancesParameter {
get { return (ILookupParameter)Parameters["Distances"]; }
}
public ILookupParameter ShortTermMemoryParameter {
get { return (ILookupParameter)Parameters["ShortTermMemory"]; }
}
public ILookupParameter MoveQualityMatrixParameter {
get { return (ILookupParameter)Parameters["MoveQualityMatrix"]; }
}
public ILookupParameter QualityParameter {
get { return (ILookupParameter)Parameters["Quality"]; }
}
public ILookupParameter BestQualityParameter {
get { return (ILookupParameter)Parameters["BestQuality"]; }
}
public ILookupParameter LastMoveParameter {
get { return (ILookupParameter)Parameters["LastMove"]; }
}
public ILookupParameter UseNewTabuTenureAdaptionSchemeParameter {
get { return (ILookupParameter)Parameters["UseNewTabuTenureAdaptionScheme"]; }
}
public ILookupParameter ResultsParameter {
get { return (ILookupParameter)Parameters["Results"]; }
}
public IValueLookupParameter MaximumIterationsParameter {
get { return (IValueLookupParameter)Parameters["MaximumIterations"]; }
}
public IValueLookupParameter MinimumTabuTenureParameter {
get { return (IValueLookupParameter)Parameters["MinimumTabuTenure"]; }
}
public IValueLookupParameter MaximumTabuTenureParameter {
get { return (IValueLookupParameter)Parameters["MaximumTabuTenure"]; }
}
public IValueLookupParameter UseAlternativeAspirationParameter {
get { return (IValueLookupParameter)Parameters["UseAlternativeAspiration"]; }
}
public IValueLookupParameter AlternativeAspirationTenureParameter {
get { return (IValueLookupParameter)Parameters["AlternativeAspirationTenure"]; }
}
private ILookupParameter AllMovesTabuParameter {
get { return (ILookupParameter)Parameters["AllMovesTabu"]; }
}
#endregion
[StorableConstructor]
private RobustTabooSeachOperator(bool deserializing) : base(deserializing) { }
private RobustTabooSeachOperator(RobustTabooSeachOperator original, Cloner cloner)
: base(original, cloner) {
}
public RobustTabooSeachOperator() {
Parameters.Add(new LookupParameter("Iterations", "The current iteration."));
Parameters.Add(new LookupParameter("Random", "The random number generator to use."));
Parameters.Add(new LookupParameter("Permutation", "The permutation solution."));
Parameters.Add(new LookupParameter("Weights", "The weights matrix."));
Parameters.Add(new LookupParameter("Distances", "The distances matrix."));
Parameters.Add(new LookupParameter("ShortTermMemory", "The table that stores the iteration at which a certain facility has been assigned to a certain location."));
Parameters.Add(new LookupParameter("MoveQualityMatrix", "The quality of all swap moves as evaluated on the current permutation."));
Parameters.Add(new LookupParameter("Quality", "The quality value."));
Parameters.Add(new LookupParameter("BestQuality", "The best quality value."));
Parameters.Add(new LookupParameter("LastMove", "The last move that was applied."));
Parameters.Add(new LookupParameter("UseNewTabuTenureAdaptionScheme", "True if the new tabu tenure adaption should be used or false otherwise."));
Parameters.Add(new LookupParameter("Results", "Collection that houses the results of the algorithm."));
Parameters.Add(new ValueLookupParameter("MaximumIterations", "The number of iterations that the algorithm should run."));
Parameters.Add(new ValueLookupParameter("MinimumTabuTenure", "The minimum tabu tenure."));
Parameters.Add(new ValueLookupParameter("MaximumTabuTenure", "The maximum tabu tenure."));
Parameters.Add(new ValueLookupParameter("UseAlternativeAspiration", "True if the alternative aspiration condition should be used that takes moves that have not been made for some time above others."));
Parameters.Add(new ValueLookupParameter("AlternativeAspirationTenure", "The time t that a move will be remembered for the alternative aspiration condition."));
Parameters.Add(new LookupParameter("AllMovesTabu", "Indicates that all moves are tabu."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new RobustTabooSeachOperator(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.3
#region Backwards compatible code, remove with 3.4
if (!Parameters.ContainsKey("AllMovesTabu")) {
Parameters.Add(new LookupParameter("AllMovesTabu", "Indicates that all moves are tabu."));
}
#endregion
}
public override IOperation Apply() {
IRandom random = RandomParameter.ActualValue;
int iteration = IterationsParameter.ActualValue.Value;
IntMatrix shortTermMemory = ShortTermMemoryParameter.ActualValue;
DoubleMatrix weights = WeightsParameter.ActualValue;
DoubleMatrix distances = DistancesParameter.ActualValue;
DoubleMatrix moveQualityMatrix = MoveQualityMatrixParameter.ActualValue;
DoubleValue quality = QualityParameter.ActualValue;
DoubleValue bestQuality = BestQualityParameter.ActualValue;
if (bestQuality == null) {
BestQualityParameter.ActualValue = (DoubleValue)quality.Clone();
bestQuality = BestQualityParameter.ActualValue;
}
bool allMovesTabu = false;
if (AllMovesTabuParameter.ActualValue == null)
AllMovesTabuParameter.ActualValue = new BoolValue(false);
else allMovesTabu = AllMovesTabuParameter.ActualValue.Value;
int minTenure = MinimumTabuTenureParameter.ActualValue.Value;
int maxTenure = MaximumTabuTenureParameter.ActualValue.Value;
int alternativeAspirationTenure = AlternativeAspirationTenureParameter.ActualValue.Value;
bool useAlternativeAspiration = UseAlternativeAspirationParameter.ActualValue.Value;
Permutation solution = PermutationParameter.ActualValue;
Swap2Move lastMove = LastMoveParameter.ActualValue;
double bestMoveQuality = double.MaxValue;
Swap2Move bestMove = null;
bool already_aspired = false;
foreach (Swap2Move move in ExhaustiveSwap2MoveGenerator.Generate(solution)) {
double moveQuality;
if (lastMove == null)
moveQuality = QAPSwap2MoveEvaluator.Apply(solution, move, weights, distances);
else if (allMovesTabu) moveQuality = moveQualityMatrix[move.Index1, move.Index2];
else moveQuality = QAPSwap2MoveEvaluator.Apply(solution, move, moveQualityMatrix[move.Index1, move.Index2], weights, distances, lastMove);
moveQualityMatrix[move.Index1, move.Index2] = moveQuality;
moveQualityMatrix[move.Index2, move.Index1] = moveQuality;
bool autorized = shortTermMemory[move.Index1, solution[move.Index2]] < iteration
|| shortTermMemory[move.Index2, solution[move.Index1]] < iteration;
bool aspired = (shortTermMemory[move.Index1, solution[move.Index2]] < iteration - alternativeAspirationTenure
&& shortTermMemory[move.Index2, solution[move.Index1]] < iteration - alternativeAspirationTenure)
|| quality.Value + moveQuality < bestQuality.Value;
if ((aspired && !already_aspired) // the first alternative move is aspired
|| (aspired && already_aspired && moveQuality < bestMoveQuality) // an alternative move was already aspired, but this is better
|| (autorized && !aspired && !already_aspired && moveQuality < bestMoveQuality)) { // a regular better move is found
bestMove = move;
bestMoveQuality = moveQuality;
if (aspired) already_aspired = true;
}
}
ResultCollection results = ResultsParameter.ActualValue;
if (results != null) {
IntValue aspiredMoves = null;
if (!results.ContainsKey("AspiredMoves")) {
aspiredMoves = new IntValue(already_aspired ? 1 : 0);
results.Add(new Result("AspiredMoves", "Counts the number of moves that were selected because of the aspiration criteria.", aspiredMoves));
} else if (already_aspired) {
aspiredMoves = (IntValue)results["AspiredMoves"].Value;
aspiredMoves.Value++;
}
}
allMovesTabu = bestMove == null;
if (!allMovesTabu)
LastMoveParameter.ActualValue = bestMove;
AllMovesTabuParameter.ActualValue.Value = allMovesTabu;
if (allMovesTabu) return base.Apply();
bool useNewAdaptionScheme = UseNewTabuTenureAdaptionSchemeParameter.ActualValue.Value;
if (useNewAdaptionScheme) {
double r = random.NextDouble();
if (r == 0) r = 1; // transform to (0;1]
shortTermMemory[bestMove.Index1, solution[bestMove.Index1]] = (int)(iteration + r * r * r * maxTenure);
r = random.NextDouble();
if (r == 0) r = 1; // transform to (0;1]
shortTermMemory[bestMove.Index2, solution[bestMove.Index2]] = (int)(iteration + r * r * r * maxTenure);
} else {
shortTermMemory[bestMove.Index1, solution[bestMove.Index1]] = iteration + random.Next(minTenure, maxTenure);
shortTermMemory[bestMove.Index2, solution[bestMove.Index2]] = iteration + random.Next(minTenure, maxTenure);
}
Swap2Manipulator.Apply(solution, bestMove.Index1, bestMove.Index2);
quality.Value += bestMoveQuality;
if (quality.Value < bestQuality.Value) bestQuality.Value = quality.Value;
return base.Apply();
}
}
}