#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Drawing;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Common.Resources;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.Programmable {
[Item("Programmable Problem (single-objective)", "Represents a single-objective problem that can be programmed with a script.")]
[Creatable("Problems")]
[StorableClass]
public sealed class SingleObjectiveProgrammableProblem : SingleObjectiveBasicProblem {
public static new Image StaticItemImage {
get { return VSImageLibrary.Script; }
}
private FixedValueParameter SingleObjectiveProblemScriptParameter {
get { return (FixedValueParameter)Parameters["ProblemScript"]; }
}
public SingleObjectiveProblemDefinitionScript ProblemScript {
get { return SingleObjectiveProblemScriptParameter.Value; }
}
public ISingleObjectiveProblemDefinition ProblemDefinition {
get { return SingleObjectiveProblemScriptParameter.Value; }
}
private SingleObjectiveProgrammableProblem(SingleObjectiveProgrammableProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEvents();
}
public override IDeepCloneable Clone(Cloner cloner) { return new SingleObjectiveProgrammableProblem(this, cloner); }
[StorableConstructor]
private SingleObjectiveProgrammableProblem(bool deserializing) : base(deserializing) { }
public SingleObjectiveProgrammableProblem()
: base() {
Parameters.Add(new FixedValueParameter("ProblemScript", "Defines the problem.", new SingleObjectiveProblemDefinitionScript() { Name = Name }));
Operators.Add(new BestScopeSolutionAnalyzer());
RegisterEvents();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEvents();
}
private void RegisterEvents() {
ProblemScript.ProblemDefinitionChanged += (o, e) => OnProblemDefinitionChanged();
}
private void OnProblemDefinitionChanged() {
if (Parameters.ContainsKey("Maximization")) Parameters.Remove("Maximization");
Parameters.Add(new FixedValueParameter("Maximization", "Set to false if the problem should be minimized.", (BoolValue)new BoolValue(Maximization).AsReadOnly()) { Hidden = true });
Encoding = ProblemDefinition.Encoding;
OnOperatorsChanged();
OnReset();
}
public override bool Maximization {
get { return Parameters.ContainsKey("ProblemScript") ? ProblemDefinition.Maximization : false; }
}
public override double Evaluate(Individual individual, IRandom random) {
return ProblemDefinition.Evaluate(individual, random);
}
public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
ProblemDefinition.Analyze(individuals, qualities, results, random);
}
public override IEnumerable GetNeighbors(Individual individual, IRandom random) {
return ProblemDefinition.GetNeighbors(individual, random);
}
}
}