#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Drawing; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Common.Resources; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.Programmable { [Item("Programmable Problem (single-objective)", "Represents a single-objective problem that can be programmed with a script.")] [Creatable("Problems")] [StorableClass] public sealed class SingleObjectiveProgrammableProblem : SingleObjectiveBasicProblem { public static new Image StaticItemImage { get { return VSImageLibrary.Script; } } private FixedValueParameter SingleObjectiveProblemScriptParameter { get { return (FixedValueParameter)Parameters["ProblemScript"]; } } public SingleObjectiveProblemDefinitionScript ProblemScript { get { return SingleObjectiveProblemScriptParameter.Value; } } public ISingleObjectiveProblemDefinition ProblemDefinition { get { return SingleObjectiveProblemScriptParameter.Value; } } private SingleObjectiveProgrammableProblem(SingleObjectiveProgrammableProblem original, Cloner cloner) : base(original, cloner) { RegisterEvents(); } public override IDeepCloneable Clone(Cloner cloner) { return new SingleObjectiveProgrammableProblem(this, cloner); } [StorableConstructor] private SingleObjectiveProgrammableProblem(bool deserializing) : base(deserializing) { } public SingleObjectiveProgrammableProblem() : base() { Parameters.Add(new FixedValueParameter("ProblemScript", "Defines the problem.", new SingleObjectiveProblemDefinitionScript() { Name = Name })); Operators.Add(new BestScopeSolutionAnalyzer()); RegisterEvents(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEvents(); } private void RegisterEvents() { ProblemScript.ProblemDefinitionChanged += (o, e) => OnProblemDefinitionChanged(); } private void OnProblemDefinitionChanged() { if (Parameters.ContainsKey("Maximization")) Parameters.Remove("Maximization"); Parameters.Add(new FixedValueParameter("Maximization", "Set to false if the problem should be minimized.", (BoolValue)new BoolValue(Maximization).AsReadOnly()) { Hidden = true }); Encoding = ProblemDefinition.Encoding; OnOperatorsChanged(); OnReset(); } public override bool Maximization { get { return Parameters.ContainsKey("ProblemScript") ? ProblemDefinition.Maximization : false; } } public override double Evaluate(Individual individual, IRandom random) { return ProblemDefinition.Evaluate(individual, random); } public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) { ProblemDefinition.Analyze(individuals, qualities, results, random); } public override IEnumerable GetNeighbors(Individual individual, IRandom random) { return ProblemDefinition.GetNeighbors(individual, random); } } }