#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.ParameterOptimization {
[Item("BestSolutionAnalyzer", "Tracks the best parameter vector solution of the current algorithm run.")]
[StorableClass]
public class BestSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
private const string MaximizationParameterName = "Maximization";
private const string ParameterVectorParameterName = "RealVector";
private const string ParameterNamesParameterName = "ParameterNames";
private const string QualityParameterName = "Quality";
private const string BestQualityParameterName = "BestQuality";
private const string BestKnownQualityParameterName = "BestKnownQuality";
private const string ResultsParameterName = "Results";
private const string BestSolutionResultName = "Best Solution";
public virtual bool EnabledByDefault {
get { return true; }
}
public ILookupParameter MaximizationParameter {
get { return (ILookupParameter)Parameters[MaximizationParameterName]; }
}
public IScopeTreeLookupParameter ParameterVectorParameter {
get { return (IScopeTreeLookupParameter)Parameters[ParameterVectorParameterName]; }
}
public ILookupParameter ParameterNamesParameter {
get { return (ILookupParameter)Parameters[ParameterNamesParameterName]; }
}
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters[QualityParameterName]; }
}
public ILookupParameter BestQualityParameter {
get { return (ILookupParameter)Parameters[BestQualityParameterName]; }
}
public ILookupParameter BestKnownQualityParameter {
get { return (ILookupParameter)Parameters[BestKnownQualityParameterName]; }
}
public IValueLookupParameter ResultsParameter {
get { return (IValueLookupParameter)Parameters[ResultsParameterName]; }
}
[StorableConstructor]
protected BestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
protected BestSolutionAnalyzer(BestSolutionAnalyzer original, Cloner cloner)
: base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new BestSolutionAnalyzer(this, cloner);
}
public BestSolutionAnalyzer()
: base() {
Parameters.Add(new LookupParameter(MaximizationParameterName, "True if the problem is a maximization problem."));
Parameters.Add(new ScopeTreeLookupParameter(ParameterVectorParameterName, "The parameter vector which should be evaluated."));
Parameters.Add(new LookupParameter(ParameterNamesParameterName, "The names of the elements in the parameter vector."));
Parameters.Add(new ScopeTreeLookupParameter(QualityParameterName, "The quality name for the parameter vectors."));
Parameters.Add(new LookupParameter(BestQualityParameterName, "The best quality found so far."));
Parameters.Add(new LookupParameter(BestKnownQualityParameterName, "The quality of the best known solution."));
Parameters.Add(new ValueLookupParameter(ResultsParameterName, "The result collection where the results should be stored."));
}
public override IOperation Apply() {
ItemArray parameterVectors = ParameterVectorParameter.ActualValue;
ItemArray qualities = QualityParameter.ActualValue;
bool max = MaximizationParameter.ActualValue.Value;
DoubleValue bestKnownQuality = BestKnownQualityParameter.ActualValue;
int indexOfBest = -1;
if (!max) indexOfBest = qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
else indexOfBest = qualities.Select((x, index) => new { index, x.Value }).OrderByDescending(x => x.Value).First().index;
var bestQuality = qualities[indexOfBest].Value;
var bestParameterVector = (RealVector)parameterVectors[indexOfBest].Clone();
ResultCollection results = ResultsParameter.ActualValue;
if (BestQualityParameter.ActualValue == null) {
if (max) BestQualityParameter.ActualValue = new DoubleValue(double.MinValue);
else BestQualityParameter.ActualValue = new DoubleValue(double.MaxValue);
}
if (!results.ContainsKey(BestSolutionResultName)) {
results.Add(new Result(BestSolutionResultName, new DoubleArray(bestParameterVector.ToArray())));
var bestSolution = (DoubleArray)results[BestSolutionResultName].Value;
bestSolution.ElementNames = ParameterNamesParameter.ActualValue;
BestQualityParameter.ActualValue.Value = bestQuality;
} else if (max && bestQuality > BestQualityParameter.ActualValue.Value
|| !max && bestQuality < BestQualityParameter.ActualValue.Value) {
var bestSolution = (DoubleArray)results[BestSolutionResultName].Value;
bestSolution.ElementNames = ParameterNamesParameter.ActualValue;
for (int i = 0; i < bestParameterVector.Length; i++)
bestSolution[i] = bestParameterVector[i];
BestQualityParameter.ActualValue.Value = bestQuality;
}
//update best known quality
if (bestKnownQuality == null
|| max && bestQuality > bestKnownQuality.Value
|| !max && bestQuality < bestKnownQuality.Value) {
BestKnownQualityParameter.ActualValue = new DoubleValue(bestQuality);
}
return base.Apply();
}
}
}