#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; namespace HeuristicLab.Problems.Instances.Regression { public class PolyTen : ArtificialRegressionDataDescriptor { public override string Name { get { return "Ploy-10 y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10"; } } public override string Description { get { return "Paper: A Simple but Theoretically-motivated Method to Control Bloat in Genetic Programming" + Environment.NewLine + "Authors: Riccardo Poli" + Environment.NewLine + "Function: y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10" + Environment.NewLine + "Terminal set: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10" + Environment.NewLine + "Fitness was minus the sum of the absolute values of the errors made over 50 fitness cases. " + "These were generated by randomly assigning values to the variables xiin the range [1, 1]."; } } protected override string TargetVariable { get { return "Y"; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 250; } } protected override int TestPartitionStart { get { return 250; } } protected override int TestPartitionEnd { get { return 500; } } protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList()); } double x1, x2, x3, x4, x5, x6, x7, x8, x9, x10; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x1 = data[0][i]; x2 = data[1][i]; x3 = data[2][i]; x4 = data[3][i]; x5 = data[4][i]; x6 = data[5][i]; x7 = data[6][i]; x8 = data[7][i]; x9 = data[8][i]; x10 = data[9][i]; results.Add(x1 * x2 + x3 * x4 + x5 * x6 + x1 * x7 * x9 + x3 * x6 * x10); } data.Add(results); return data; } } }