1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Globalization;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
32 | public class VariableNetwork : ArtificialRegressionDataDescriptor {
|
---|
33 | private int nTrainingSamples;
|
---|
34 | private int nTestSamples;
|
---|
35 |
|
---|
36 | private int numberOfFeatures;
|
---|
37 | private double noiseRatio;
|
---|
38 | private IRandom random;
|
---|
39 |
|
---|
40 | public override string Name { get { return string.Format("VariableNetwork-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } }
|
---|
41 | private string networkDefinition;
|
---|
42 | public string NetworkDefinition { get { return networkDefinition; } }
|
---|
43 | public override string Description {
|
---|
44 | get {
|
---|
45 | return "The data are generated specifically to test methods for variable network analysis.";
|
---|
46 | }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public VariableNetwork(int numberOfFeatures, double noiseRatio,
|
---|
50 | IRandom rand)
|
---|
51 | : this(250, 250, numberOfFeatures, noiseRatio, rand) { }
|
---|
52 |
|
---|
53 | public VariableNetwork(int nTrainingSamples, int nTestSamples,
|
---|
54 | int numberOfFeatures, double noiseRatio, IRandom rand) {
|
---|
55 | this.nTrainingSamples = nTrainingSamples;
|
---|
56 | this.nTestSamples = nTestSamples;
|
---|
57 | this.noiseRatio = noiseRatio;
|
---|
58 | this.random = rand;
|
---|
59 | this.numberOfFeatures = numberOfFeatures;
|
---|
60 | // default variable names
|
---|
61 | variableNames = Enumerable.Range(1, numberOfFeatures)
|
---|
62 | .Select(i => string.Format("X{0:000}", i))
|
---|
63 | .ToArray();
|
---|
64 |
|
---|
65 | variableRelevances = new Dictionary<string, IEnumerable<KeyValuePair<string, double>>>();
|
---|
66 | }
|
---|
67 |
|
---|
68 | private string[] variableNames;
|
---|
69 | protected override string[] VariableNames {
|
---|
70 | get {
|
---|
71 | return variableNames;
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 | // there is no specific target variable in variable network analysis but we still need to specify one
|
---|
76 | protected override string TargetVariable { get { return VariableNames.Last(); } }
|
---|
77 |
|
---|
78 | protected override string[] AllowedInputVariables {
|
---|
79 | get {
|
---|
80 | return VariableNames.Take(numberOfFeatures - 1).ToArray();
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
85 | protected override int TrainingPartitionEnd { get { return nTrainingSamples; } }
|
---|
86 | protected override int TestPartitionStart { get { return nTrainingSamples; } }
|
---|
87 | protected override int TestPartitionEnd { get { return nTrainingSamples + nTestSamples; } }
|
---|
88 |
|
---|
89 | private Dictionary<string, IEnumerable<KeyValuePair<string, double>>> variableRelevances;
|
---|
90 | public IEnumerable<KeyValuePair<string, double>> GetVariableRelevance(string targetVar) {
|
---|
91 | return variableRelevances[targetVar];
|
---|
92 | }
|
---|
93 |
|
---|
94 | protected override List<List<double>> GenerateValues() {
|
---|
95 | // variable names are shuffled in the beginning (and sorted at the end)
|
---|
96 | variableNames = variableNames.Shuffle(random).ToArray();
|
---|
97 |
|
---|
98 | // a third of all variables are independent vars
|
---|
99 | List<List<double>> lvl0 = new List<List<double>>();
|
---|
100 | int numLvl0 = (int)Math.Ceiling(numberOfFeatures * 0.33);
|
---|
101 |
|
---|
102 | List<string> description = new List<string>(); // store information how the variable is actually produced
|
---|
103 | List<string[]> inputVarNames = new List<string[]>(); // store information to produce graphviz file
|
---|
104 | List<double[]> relevances = new List<double[]>(); // stores variable relevance information (same order as given in inputVarNames)
|
---|
105 |
|
---|
106 | var nrand = new NormalDistributedRandom(random, 0, 1);
|
---|
107 | for (int c = 0; c < numLvl0; c++) {
|
---|
108 | inputVarNames.Add(new string[] { });
|
---|
109 | relevances.Add(new double[] { });
|
---|
110 | description.Add(" ~ N(0, 1)");
|
---|
111 | lvl0.Add(Enumerable.Range(0, TestPartitionEnd).Select(_ => nrand.NextDouble()).ToList());
|
---|
112 | }
|
---|
113 |
|
---|
114 | // lvl1 contains variables which are functions of vars in lvl0 (+ noise)
|
---|
115 | int numLvl1 = (int)Math.Ceiling(numberOfFeatures * 0.33);
|
---|
116 | List<List<double>> lvl1 = CreateVariables(lvl0, numLvl1, inputVarNames, description, relevances);
|
---|
117 |
|
---|
118 | // lvl2 contains variables which are functions of vars in lvl0 and lvl1 (+ noise)
|
---|
119 | int numLvl2 = (int)Math.Ceiling(numberOfFeatures * 0.2);
|
---|
120 | List<List<double>> lvl2 = CreateVariables(lvl0.Concat(lvl1).ToList(), numLvl2, inputVarNames, description, relevances);
|
---|
121 |
|
---|
122 | // lvl3 contains variables which are functions of vars in lvl0, lvl1 and lvl2 (+ noise)
|
---|
123 | int numLvl3 = numberOfFeatures - numLvl0 - numLvl1 - numLvl2;
|
---|
124 | List<List<double>> lvl3 = CreateVariables(lvl0.Concat(lvl1).Concat(lvl2).ToList(), numLvl3, inputVarNames, description, relevances);
|
---|
125 |
|
---|
126 | this.variableRelevances.Clear();
|
---|
127 | for (int i = 0; i < variableNames.Length; i++) {
|
---|
128 | var targetVarName = variableNames[i];
|
---|
129 | var targetRelevantInputs =
|
---|
130 | inputVarNames[i].Zip(relevances[i], (inputVar, rel) => new KeyValuePair<string, double>(inputVar, rel))
|
---|
131 | .ToArray();
|
---|
132 | variableRelevances.Add(targetVarName, targetRelevantInputs);
|
---|
133 | }
|
---|
134 |
|
---|
135 | networkDefinition = string.Join(Environment.NewLine, variableNames.Zip(description, (n, d) => n + d).OrderBy(x => x));
|
---|
136 | // for graphviz
|
---|
137 | networkDefinition += Environment.NewLine + "digraph G {";
|
---|
138 | for (int i = 0; i < variableNames.Length; i++) {
|
---|
139 | var name = variableNames[i];
|
---|
140 | var selectedVarNames = inputVarNames[i];
|
---|
141 | var selectedRelevances = relevances[i];
|
---|
142 | for (int j = 0; j < selectedVarNames.Length; j++) {
|
---|
143 | var selectedVarName = selectedVarNames[j];
|
---|
144 | var selectedRelevance = selectedRelevances[j];
|
---|
145 | networkDefinition += Environment.NewLine + selectedVarName + " -> " + name +
|
---|
146 | string.Format(CultureInfo.InvariantCulture, " [label={0:N3}]", selectedRelevance);
|
---|
147 | }
|
---|
148 | }
|
---|
149 | networkDefinition += Environment.NewLine + "}";
|
---|
150 |
|
---|
151 | // return a random permutation of all variables (to mix lvl0, lvl1, ... variables)
|
---|
152 | var allVars = lvl0.Concat(lvl1).Concat(lvl2).Concat(lvl3).ToList();
|
---|
153 | var orderedVars = allVars.Zip(variableNames, Tuple.Create).OrderBy(t => t.Item2).Select(t => t.Item1).ToList();
|
---|
154 | variableNames = variableNames.OrderBy(n => n).ToArray();
|
---|
155 | return orderedVars;
|
---|
156 | }
|
---|
157 |
|
---|
158 | private List<List<double>> CreateVariables(List<List<double>> allowedInputs, int numVars, List<string[]> inputVarNames, List<string> description, List<double[]> relevances) {
|
---|
159 | var res = new List<List<double>>();
|
---|
160 | for (int c = 0; c < numVars; c++) {
|
---|
161 | string[] selectedVarNames;
|
---|
162 | double[] relevance;
|
---|
163 | var x = GenerateRandomFunction(random, allowedInputs, out selectedVarNames, out relevance);
|
---|
164 | var sigma = x.StandardDeviation();
|
---|
165 | var noisePrng = new NormalDistributedRandom(random, 0, sigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
166 | res.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
167 | Array.Sort(selectedVarNames, relevance);
|
---|
168 | inputVarNames.Add(selectedVarNames);
|
---|
169 | relevances.Add(relevance);
|
---|
170 | var desc = string.Format("f({0})", string.Join(",", selectedVarNames));
|
---|
171 | // for the relevance information order variables by decreasing relevance
|
---|
172 | var relevanceStr = string.Join(", ",
|
---|
173 | selectedVarNames.Zip(relevance, Tuple.Create)
|
---|
174 | .OrderByDescending(t => t.Item2)
|
---|
175 | .Select(t => string.Format(CultureInfo.InvariantCulture, "{0}: {1:N3}", t.Item1, t.Item2)));
|
---|
176 | description.Add(string.Format(" ~ N({0}, {1:N3}) [Relevances: {2}]", desc, noisePrng.Sigma, relevanceStr));
|
---|
177 | }
|
---|
178 | return res;
|
---|
179 | }
|
---|
180 |
|
---|
181 | // sample the input variables that are actually used and sample from a Gaussian process
|
---|
182 | private IEnumerable<double> GenerateRandomFunction(IRandom rand, List<List<double>> xs, out string[] selectedVarNames, out double[] relevance) {
|
---|
183 | double r = -Math.Log(1.0 - rand.NextDouble()) * 2.0; // r is exponentially distributed with lambda = 2
|
---|
184 | int nl = (int)Math.Floor(1.5 + r); // number of selected vars is likely to be between three and four
|
---|
185 | if (nl > xs.Count) nl = xs.Count; // limit max
|
---|
186 |
|
---|
187 | var selectedIdx = Enumerable.Range(0, xs.Count).Shuffle(random)
|
---|
188 | .Take(nl).ToArray();
|
---|
189 |
|
---|
190 | var selectedVars = selectedIdx.Select(i => xs[i]).ToArray();
|
---|
191 | selectedVarNames = selectedIdx.Select(i => VariableNames[i]).ToArray();
|
---|
192 | return SampleGaussianProcess(random, selectedVars, out relevance);
|
---|
193 | }
|
---|
194 |
|
---|
195 | private IEnumerable<double> SampleGaussianProcess(IRandom random, List<double>[] xs, out double[] relevance) {
|
---|
196 | int nl = xs.Length;
|
---|
197 | int nRows = xs.First().Count;
|
---|
198 |
|
---|
199 | // sample u iid ~ N(0, 1)
|
---|
200 | var u = Enumerable.Range(0, nRows).Select(_ => NormalDistributedRandom.NextDouble(random, 0, 1)).ToArray();
|
---|
201 |
|
---|
202 | // sample actual length-scales
|
---|
203 | var l = Enumerable.Range(0, nl)
|
---|
204 | .Select(_ => random.NextDouble() * 2 + 0.5)
|
---|
205 | .ToArray();
|
---|
206 |
|
---|
207 | double[,] K = CalculateCovariance(xs, l);
|
---|
208 |
|
---|
209 | // decompose
|
---|
210 | alglib.trfac.spdmatrixcholesky(ref K, nRows, false);
|
---|
211 |
|
---|
212 |
|
---|
213 | // calc y = Lu
|
---|
214 | var y = new double[u.Length];
|
---|
215 | alglib.ablas.rmatrixmv(nRows, nRows, K, 0, 0, 0, u, 0, ref y, 0);
|
---|
216 |
|
---|
217 | // calculate relevance by removing dimensions
|
---|
218 | relevance = CalculateRelevance(y, u, xs, l);
|
---|
219 |
|
---|
220 |
|
---|
221 | // calculate variable relevance
|
---|
222 | // as per Rasmussen and Williams "Gaussian Processes for Machine Learning" page 106:
|
---|
223 | // ,,For the squared exponential covariance function [...] the l1, ..., lD hyperparameters
|
---|
224 | // play the role of characteristic length scales [...]. Such a covariance function implements
|
---|
225 | // automatic relevance determination (ARD) [Neal, 1996], since the inverse of the length-scale
|
---|
226 | // determines how relevant an input is: if the length-scale has a very large value, the covariance
|
---|
227 | // will become almost independent of that input, effectively removing it from inference.''
|
---|
228 | // relevance = l.Select(li => 1.0 / li).ToArray();
|
---|
229 |
|
---|
230 | return y;
|
---|
231 | }
|
---|
232 |
|
---|
233 | // calculate variable relevance based on removal of variables
|
---|
234 | // 1) to remove a variable we set it's length scale to infinity (no relation of the variable value to the target)
|
---|
235 | // 2) calculate MSE of the original target values (y) to the updated targes y' (after variable removal)
|
---|
236 | // 3) relevance is larger if MSE(y,y') is large
|
---|
237 | // 4) scale impacts so that the most important variable has impact = 1
|
---|
238 | private double[] CalculateRelevance(double[] y, double[] u, List<double>[] xs, double[] l) {
|
---|
239 | int nRows = xs.First().Count;
|
---|
240 | var changedL = new double[l.Length];
|
---|
241 | var relevance = new double[l.Length];
|
---|
242 | for (int i = 0; i < l.Length; i++) {
|
---|
243 | Array.Copy(l, changedL, changedL.Length);
|
---|
244 | changedL[i] = double.MaxValue;
|
---|
245 | var changedK = CalculateCovariance(xs, changedL);
|
---|
246 |
|
---|
247 | var yChanged = new double[u.Length];
|
---|
248 | alglib.ablas.rmatrixmv(nRows, nRows, changedK, 0, 0, 0, u, 0, ref yChanged, 0);
|
---|
249 |
|
---|
250 | OnlineCalculatorError error;
|
---|
251 | var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error);
|
---|
252 | if (error != OnlineCalculatorError.None) mse = double.MaxValue;
|
---|
253 | relevance[i] = mse;
|
---|
254 | }
|
---|
255 | // scale so that max relevance is 1.0
|
---|
256 | var maxRel = relevance.Max();
|
---|
257 | for (int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
|
---|
258 | return relevance;
|
---|
259 | }
|
---|
260 |
|
---|
261 | private double[,] CalculateCovariance(List<double>[] xs, double[] l) {
|
---|
262 | int nRows = xs.First().Count;
|
---|
263 | double[,] K = new double[nRows, nRows];
|
---|
264 | for (int r = 0; r < nRows; r++) {
|
---|
265 | double[] xi = xs.Select(x => x[r]).ToArray();
|
---|
266 | for (int c = 0; c <= r; c++) {
|
---|
267 | double[] xj = xs.Select(x => x[c]).ToArray();
|
---|
268 | double dSqr = xi.Zip(xj, (xik, xjk) => (xik - xjk))
|
---|
269 | .Select(dk => dk * dk)
|
---|
270 | .Zip(l, (dk, lk) => dk / lk)
|
---|
271 | .Sum();
|
---|
272 | K[r, c] = Math.Exp(-dSqr);
|
---|
273 | }
|
---|
274 | }
|
---|
275 | // add a small diagonal matrix for numeric stability
|
---|
276 | for (int i = 0; i < nRows; i++) {
|
---|
277 | K[i, i] += 1.0E-7;
|
---|
278 | }
|
---|
279 |
|
---|
280 | return K;
|
---|
281 | }
|
---|
282 | }
|
---|
283 | }
|
---|