#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*
* Author: Sabine Winkler
*/
#endregion
using System;
using System.Drawing;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Common.Resources;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.GrammaticalEvolution.Mappers;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Problems.GrammaticalEvolution {
[StorableClass]
public abstract class GESymbolicDataAnalysisProblem : HeuristicOptimizationProblem, IDataAnalysisProblem,
IGESymbolicDataAnalysisProblem, IStorableContent,
IProblemInstanceConsumer, IProblemInstanceExporter
where T : class, IDataAnalysisProblemData
where U : class, IGESymbolicDataAnalysisEvaluator
where V : class, IIntegerVectorCreator {
#region parameter names & descriptions
private const string ProblemDataParameterName = "ProblemData";
private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
private const string ValidationPartitionParameterName = "ValidationPartition";
private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
private const string BoundsParameterName = "Bounds";
private const string GenotypeToPhenotypeMapperParameterName = "GenotypeToPhenotypeMapper";
private const string ProblemDataParameterDescription = "";
private const string SymbolicExpressionTreeGrammarParameterDescription = "The grammar that should be used for symbolic expression tree.";
private const string SymbolicExpressionTreeInterpreterParameterDescription = "The interpreter that should be used to evaluate the symbolic expression tree.";
private const string MaximumSymbolicExpressionTreeLengthParameterDescription = "Maximal length of the symbolic expression.";
private const string RelativeNumberOfEvaluatedSamplesParameterDescription = "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation.";
private const string FitnessCalculationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to calculate the fitness of an individual.";
private const string ValidationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to select the best model from (optional).";
private const string ApplyLinearScalingParameterDescription = "Flag that indicates if the individual should be linearly scaled before evaluating.";
private const string BoundsParameterDescription = "The integer number range in which the single genomes of a genotype are created.";
private const string GenotypeToPhenotypeMapperParameterDescription = "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree).";
#endregion
#region parameter properties
IParameter IDataAnalysisProblem.ProblemDataParameter {
get { return ProblemDataParameter; }
}
public IValueParameter ProblemDataParameter {
get { return (IValueParameter)Parameters[ProblemDataParameterName]; }
}
public IValueParameter SymbolicExpressionTreeGrammarParameter {
get { return (IValueParameter)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
}
public IValueParameter SymbolicExpressionTreeInterpreterParameter {
get { return (IValueParameter)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
}
public IFixedValueParameter MaximumSymbolicExpressionTreeLengthParameter {
get { return (IFixedValueParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
}
public IFixedValueParameter RelativeNumberOfEvaluatedSamplesParameter {
get { return (IFixedValueParameter)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
}
public IFixedValueParameter FitnessCalculationPartitionParameter {
get { return (IFixedValueParameter)Parameters[FitnessCalculationPartitionParameterName]; }
}
public IFixedValueParameter ValidationPartitionParameter {
get { return (IFixedValueParameter)Parameters[ValidationPartitionParameterName]; }
}
public IFixedValueParameter ApplyLinearScalingParameter {
get { return (IFixedValueParameter)Parameters[ApplyLinearScalingParameterName]; }
}
public IValueParameter BoundsParameter {
get { return (IValueParameter)Parameters[BoundsParameterName]; }
}
public IValueParameter GenotypeToPhenotypeMapperParameter {
get { return (IValueParameter)Parameters[GenotypeToPhenotypeMapperParameterName]; }
}
#endregion
#region properties
public string Filename { get; set; }
public static new Image StaticItemImage { get { return VSImageLibrary.Type; } }
IDataAnalysisProblemData IDataAnalysisProblem.ProblemData {
get { return ProblemData; }
}
public T ProblemData {
get { return ProblemDataParameter.Value; }
set { ProblemDataParameter.Value = value; }
}
public ISymbolicDataAnalysisGrammar SymbolicExpressionTreeGrammar {
get { return SymbolicExpressionTreeGrammarParameter.Value; }
set { SymbolicExpressionTreeGrammarParameter.Value = value; }
}
public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
get { return SymbolicExpressionTreeInterpreterParameter.Value; }
set { SymbolicExpressionTreeInterpreterParameter.Value = value; }
}
public IntValue MaximumSymbolicExpressionTreeLength {
get { return MaximumSymbolicExpressionTreeLengthParameter.Value; }
}
public PercentValue RelativeNumberOfEvaluatedSamples {
get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
}
public IntRange FitnessCalculationPartition {
get { return FitnessCalculationPartitionParameter.Value; }
}
public IntRange ValidationPartition {
get { return ValidationPartitionParameter.Value; }
}
public BoolValue ApplyLinearScaling {
get { return ApplyLinearScalingParameter.Value; }
}
#endregion
[StorableConstructor]
protected GESymbolicDataAnalysisProblem(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
protected GESymbolicDataAnalysisProblem(GESymbolicDataAnalysisProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
protected GESymbolicDataAnalysisProblem(T problemData, U evaluator, V solutionCreator)
: base(evaluator, solutionCreator) {
Parameters.Add(new ValueParameter(ProblemDataParameterName, ProblemDataParameterDescription, problemData));
Parameters.Add(new ValueParameter(SymbolicExpressionTreeGrammarParameterName, SymbolicExpressionTreeGrammarParameterDescription));
Parameters.Add(new ValueParameter(SymbolicExpressionTreeInterpreterParameterName, SymbolicExpressionTreeInterpreterParameterDescription));
Parameters.Add(new FixedValueParameter(MaximumSymbolicExpressionTreeLengthParameterName, MaximumSymbolicExpressionTreeLengthParameterDescription));
Parameters.Add(new FixedValueParameter(FitnessCalculationPartitionParameterName, FitnessCalculationPartitionParameterDescription));
Parameters.Add(new FixedValueParameter(ValidationPartitionParameterName, ValidationPartitionParameterDescription));
Parameters.Add(new FixedValueParameter(RelativeNumberOfEvaluatedSamplesParameterName, RelativeNumberOfEvaluatedSamplesParameterDescription, new PercentValue(1)));
Parameters.Add(new FixedValueParameter(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
IntMatrix m = new IntMatrix(new int[,] { { 0, 100 } });
Parameters.Add(new ValueParameter(BoundsParameterName, BoundsParameterDescription, m));
Parameters.Add(new ValueParameter(GenotypeToPhenotypeMapperParameterName, GenotypeToPhenotypeMapperParameterDescription, new DepthFirstMapper()));
SymbolicExpressionTreeInterpreterParameter.Hidden = true;
ApplyLinearScalingParameter.Hidden = true;
if (problemData.AllowedInputVariables.Any(name => !problemData.Dataset.VariableHasType(name))) throw new NotSupportedException("Categorical variables are not supported");
SymbolicExpressionTreeGrammar = new GESymbolicExpressionGrammar(problemData.AllowedInputVariables, problemData.AllowedInputVariables.Count() * 3);
SymbolicExpressionTreeInterpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
InitializeOperators();
UpdateGrammar();
RegisterEventHandlers();
}
private void DeregisterGrammarHandler() {
SymbolicExpressionTreeGrammarParameter.ValueChanged -= SymbolicExpressionTreeGrammarParameter_ValueChanged;
}
private void RegisterGrammarHandler() {
SymbolicExpressionTreeGrammarParameter.ValueChanged += SymbolicExpressionTreeGrammarParameter_ValueChanged;
}
private void UpdateGrammar() {
DeregisterGrammarHandler();
// create a new grammar instance with the correct allowed input variables
SymbolicExpressionTreeGrammarParameter.Value =
new GESymbolicExpressionGrammar(ProblemData.AllowedInputVariables, ProblemData.AllowedInputVariables.Count() * 3);
RegisterGrammarHandler();
}
private void InitializeOperators() {
Operators.AddRange(ApplicationManager.Manager.GetInstances());
Operators.Add(new SymbolicExpressionSymbolFrequencyAnalyzer());
Operators.Add(new SymbolicDataAnalysisVariableFrequencyAnalyzer());
Operators.Add(new MinAverageMaxSymbolicExpressionTreeLengthAnalyzer());
Operators.Add(new SymbolicExpressionTreeLengthAnalyzer());
ParameterizeOperators();
}
#region events
private void RegisterEventHandlers() {
ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
ProblemDataParameter.Value.Changed += (object sender, EventArgs e) => OnProblemDataChanged();
RegisterGrammarHandler();
}
private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
ValidationPartition.Start = 0;
ValidationPartition.End = 0;
ProblemDataParameter.Value.Changed += (object s, EventArgs args) => OnProblemDataChanged();
OnProblemDataChanged();
}
private void SymbolicExpressionTreeGrammarParameter_ValueChanged(object sender, EventArgs e) {
UpdateGrammar();
}
protected override void OnEvaluatorChanged() {
base.OnEvaluatorChanged();
Evaluator.SymbolicExpressionTreeParameter.ActualNameChanged += new EventHandler(Evaluator_SymbolicExpressionTreeParameter_ActualNameChanged);
ParameterizeOperators();
}
private void Evaluator_SymbolicExpressionTreeParameter_ActualNameChanged(object sender, EventArgs e) {
ParameterizeOperators();
}
public event EventHandler ProblemDataChanged;
protected virtual void OnProblemDataChanged() {
FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
UpdateGrammar();
ParameterizeOperators();
var handler = ProblemDataChanged;
if (handler != null) handler(this, EventArgs.Empty);
OnReset();
}
#endregion
protected virtual void ParameterizeOperators() {
var operators = Parameters.OfType().Select(p => p.Value).OfType().Union(Operators).ToList();
foreach (var op in operators.OfType()) {
op.SymbolicExpressionTreeGrammarParameter.ActualName = SymbolicExpressionTreeGrammarParameter.Name;
}
foreach (var op in operators.OfType>()) {
op.ProblemDataParameter.ActualName = ProblemDataParameterName;
op.SymbolicExpressionTreeParameter.ActualName = Evaluator.SymbolicExpressionTreeParameter.ActualName;
op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
op.IntegerVectorParameter.ActualName = SolutionCreator.IntegerVectorParameter.Name;
op.GenotypeToPhenotypeMapperParameter.ActualName = GenotypeToPhenotypeMapperParameter.Name;
op.SymbolicExpressionTreeGrammarParameter.ActualName = SymbolicExpressionTreeGrammarParameter.Name;
}
foreach (var op in operators.OfType()) {
op.ParentsParameter.ActualName = SolutionCreator.IntegerVectorParameter.ActualName;
op.ChildParameter.ActualName = SolutionCreator.IntegerVectorParameter.ActualName;
}
foreach (var op in operators.OfType()) {
op.IntegerVectorParameter.ActualName = SolutionCreator.IntegerVectorParameter.ActualName;
}
foreach (var op in operators.OfType()) {
op.BoundsParameter.ActualName = BoundsParameter.Name;
op.LengthParameter.ActualName = MaximumSymbolicExpressionTreeLengthParameter.Name;
}
foreach (var op in operators.OfType()) {
op.SymbolicExpressionTreeParameter.ActualName = Evaluator.SymbolicExpressionTreeParameter.ActualName;
}
foreach (var op in operators.OfType()) {
op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
}
foreach (var op in operators.OfType()) {
op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
}
foreach (var op in operators.OfType()) {
op.SymbolicExpressionTreeParameter.ActualName = Evaluator.SymbolicExpressionTreeParameter.ActualName;
}
foreach (var op in operators.OfType>()) {
op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
op.ValidationPartitionParameter.ActualName = ValidationPartitionParameter.Name;
}
foreach (var op in operators.OfType()) {
op.SymbolicDataAnalysisTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
}
}
#region Import & Export
public virtual void Load(T data) {
Name = data.Name;
Description = data.Description;
ProblemData = data;
}
public virtual T Export() {
return ProblemData;
}
#endregion
}
}