#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*
* Author: Sabine Winkler
*/
#endregion
using System.Diagnostics.Contracts;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.GeneticProgramming.ArtificialAnt;
using HeuristicLab.Problems.GrammaticalEvolution.Mappers;
namespace HeuristicLab.Problems.GrammaticalEvolution {
[Item("Grammatical Evolution Artificial Ant Problem", "Represents the Artificial Ant problem, implemented in Grammatical Evolution.")]
[Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)]
[StorableClass]
public sealed class GEArtificialAntProblem : SingleObjectiveBasicProblem, IStorableContent {
public string Filename { get; set; }
#region Parameter Properties
public IValueParameter WorldParameter {
get { return (IValueParameter)Parameters["World"]; }
}
public IFixedValueParameter MaxTimeStepsParameter {
get { return (IFixedValueParameter)Parameters["MaximumTimeSteps"]; }
}
public IValueParameter GenotypeToPhenotypeMapperParameter {
get { return (IValueParameter)Parameters["GenotypeToPhenotypeMapper"]; }
}
#endregion
#region Properties
public BoolMatrix World {
get { return WorldParameter.Value; }
set { WorldParameter.Value = value; }
}
public int MaxTimeSteps {
get { return MaxTimeStepsParameter.Value.Value; }
set { MaxTimeStepsParameter.Value.Value = value; }
}
#endregion
[StorableConstructor]
private GEArtificialAntProblem(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override bool Maximization {
get { return true; }
}
[Storable]
// parameters of the wrapped problem cannot be changed therefore it is not strictly necessary to clone and store it
private readonly HeuristicLab.Problems.GeneticProgramming.ArtificialAnt.Problem wrappedAntProblem;
private GEArtificialAntProblem(GEArtificialAntProblem original, Cloner cloner)
: base(original, cloner) {
this.wrappedAntProblem = cloner.Clone(original.wrappedAntProblem);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new GEArtificialAntProblem(this, cloner);
}
public GEArtificialAntProblem()
: base() {
wrappedAntProblem = new HeuristicLab.Problems.GeneticProgramming.ArtificialAnt.Problem();
Parameters.Add(new ValueParameter("World", "The world for the artificial ant with scattered food items.", wrappedAntProblem.World));
Parameters.Add(new FixedValueParameter("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600)));
Parameters.Add(new ValueParameter("GenotypeToPhenotypeMapper", "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree).", new DepthFirstMapper()));
Encoding = new IntegerVectorEncoding(30) { Bounds = new IntMatrix(new int[,] { { 0, 100 } }) };
BestKnownQuality = wrappedAntProblem.BestKnownQuality;
}
public override double Evaluate(Individual individual, IRandom random) {
var vector = individual.IntegerVector();
var bounds = Encoding.Bounds;
var len = Encoding.Length;
var grammar = wrappedAntProblem.Encoding.Grammar;
var mapper = GenotypeToPhenotypeMapperParameter.Value;
var tree = mapper.Map(random, bounds, len, grammar, vector);
Interpreter interpreter = new Interpreter(tree, World, MaxTimeSteps);
interpreter.Run();
return interpreter.FoodEaten;
}
public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
var bounds = Encoding.Bounds;
var len = Encoding.Length;
var grammar = wrappedAntProblem.Encoding.Grammar;
var mapper = GenotypeToPhenotypeMapperParameter.Value;
var trees = individuals
.Select(ind => mapper.Map(random, bounds, len, grammar, ind.IntegerVector()))
.ToArray();
wrappedAntProblem.Analyze(trees, qualities, results, random);
}
}
}