#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*
* Author: Sabine Winkler
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.GrammaticalEvolution {
///
/// Position Independent (PI) Grammatical Evolution Mapper
/// -----------------------------------------------------------------------------------
/// Standard GE mappers:
/// Rule = Codon Value % Number Of Rules
///
/// 𝜋GE:
/// 𝜋GE codons consist of (nont, rule) tuples, where nont may be one value from an "order"
/// integer vector and rule may be one value from a "content" integer vector.
///
/// Order: NT = nont % Num. NT ... determines, which non-terminal to expand next
/// Content: Rule = rule % Num. Rules ... rule determination as with standard GE mappers
///
/// Four mutation and crossover strategies possible:
/// * Order-only: only "order" vector is modified, "content" vector is fixed (1:0),
/// worst result according to [2]
/// * Content-only: only "content" vector is modified, "order" vector is fixed (0:1),
/// best result according to [2]
/// * 𝜋GE: genetic operators are applied equally (1:1),
/// * Content:Order: genetic operators are applied unequally (e.g. 2:1 or 1:2),
///
/// Here, the "content-only" strategy is implemented, as it is the best solution according to [2]
/// and it does not require much to change in the problem and evaluator classes.
///
///
///
/// Described in
///
/// [1] Michael O’Neill et al. 𝜋Grammatical Evolution. In: GECCO 2004.
/// Vol. 3103. LNCS. Heidelberg: Springer-Verlag Berlin, 2004, pp. 617–629.
/// url: http://dynamics.org/Altenberg/UH_ICS/EC_REFS/GP_REFS/GECCO/2004/31030617.pdf.
///
/// [2] David Fagan et al. Investigating Mapping Order in πGE. IEEE, 2010
/// url: http://ncra.ucd.ie/papers/pigeWCCI2010.pdf
///
[Item("PIGEMapper", "Position Independent (PI) Grammatical Evolution Mapper")]
[StorableClass]
public class PIGEMapper : GenotypeToPhenotypeMapper {
private object nontVectorLocker = new object();
private IntegerVector nontVector;
public IntegerVector NontVector {
get { return nontVector; }
set { nontVector = value; }
}
private static IntegerVector GetNontVector(IRandom random, IntMatrix bounds, int length) {
IntegerVector v = new IntegerVector(length);
v.Randomize(random, bounds);
return v;
}
[StorableConstructor]
protected PIGEMapper(bool deserializing) : base(deserializing) { }
protected PIGEMapper(PIGEMapper original, Cloner cloner) : base(original, cloner) { }
public PIGEMapper() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new PIGEMapper(this, cloner);
}
///
/// Maps a genotype (an integer vector) to a phenotype (a symbolic expression tree).
/// PIGE approach.
///
/// random number generator
/// integer number range for genomes (codons) of the nont vector
/// length of the nont vector to create
/// grammar definition
/// integer vector, which should be mapped to a tree
/// phenotype (a symbolic expression tree)
public override SymbolicExpressionTree Map(IRandom random, IntMatrix bounds, int length,
ISymbolicExpressionGrammar grammar,
IntegerVector genotype) {
SymbolicExpressionTree tree = new SymbolicExpressionTree();
var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
rootNode.AddSubtree(startNode);
tree.Root = rootNode;
// Map can be called simultaniously on multiple threads
lock (nontVectorLocker) {
if (NontVector == null) {
NontVector = GetNontVector(random, bounds, length);
}
}
MapPIGEIteratively(startNode, genotype, grammar,
genotype.Length, random);
return tree;
}
///
/// Genotype-to-Phenotype mapper (iterative 𝜋GE approach, using a list of not expanded nonTerminals).
///
/// first node of the tree with arity 1
/// integer vector, which should be mapped to a tree
/// grammar to determine the allowed child symbols for each node
/// maximum allowed subtrees (= number of used genomes)
/// random number generator
private void MapPIGEIteratively(ISymbolicExpressionTreeNode startNode,
IntegerVector genotype,
ISymbolicExpressionGrammar grammar,
int maxSubtreeCount, IRandom random) {
List nonTerminals = new List();
int genotypeIndex = 0;
nonTerminals.Add(startNode);
while (nonTerminals.Count > 0) {
if (genotypeIndex >= maxSubtreeCount) {
// if all genomes were used, only add terminal nodes to the remaining subtrees
ISymbolicExpressionTreeNode current = nonTerminals[0];
nonTerminals.RemoveAt(0);
current.AddSubtree(GetRandomTerminalNode(current, grammar, random));
} else {
// Order: NT = nont % Num. NT
int nt = NontVector[genotypeIndex] % nonTerminals.Count;
ISymbolicExpressionTreeNode current = nonTerminals[nt];
nonTerminals.RemoveAt(nt);
// Content: Rule = rule % Num. Rules
ISymbolicExpressionTreeNode newNode = GetNewChildNode(current, genotype, grammar, genotypeIndex, random);
int arity = SampleArity(random, newNode, grammar);
current.AddSubtree(newNode);
genotypeIndex++;
// new node has subtrees, so add "arity" number of copies of this node to the nonTerminals list
for (int i = 0; i < arity; ++i) {
nonTerminals.Add(newNode);
}
}
}
}
}
}