#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.GeneticProgramming.Boolean {
[Item("Even Parity Problem", "The Boolean even parity genetic programming problem. See Koza, 1992, page 529 section 20.2 Symbolic Regression of Even-Parity Functions")]
[Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 900)]
[StorableClass]
public sealed class EvenParityProblem : SymbolicExpressionTreeProblem {
#region parameter names
private const string NumberOfBitsParameterName = "NumberOfBits";
#endregion
#region Parameter Properties
public IFixedValueParameter NumberOfBitsParameter {
get { return (IFixedValueParameter)Parameters[NumberOfBitsParameterName]; }
}
#endregion
#region Properties
public int NumberOfBits {
get { return NumberOfBitsParameter.Value.Value; }
set { NumberOfBitsParameter.Value.Value = value; }
}
#endregion
public override bool Maximization {
get { return true; }
}
#region item cloning and persistence
// persistence
[StorableConstructor]
private EvenParityProblem(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
// cloning
private EvenParityProblem(EvenParityProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new EvenParityProblem(this, cloner);
}
#endregion
public EvenParityProblem()
: base() {
Parameters.Add(new FixedValueParameter(NumberOfBitsParameterName, "The number of bits for the input parameter for the even parity function", new IntValue(4)));
var g = new SimpleSymbolicExpressionGrammar(); // will be replaced in update grammar
Encoding = new SymbolicExpressionTreeEncoding(g, 100, 17);
UpdateGrammar();
RegisterEventHandlers();
}
private void UpdateGrammar() {
var g = new SimpleSymbolicExpressionGrammar();
g.AddSymbols(new[] { "AND", "OR", "NAND", "NOR" }, 2, 2); // see Koza, 1992, page 529 section 20.2 Symbolic Regression of Even-Parity Functions
// add one terminal symbol for each bit
for (int i = 0; i < NumberOfBits; i++)
g.AddTerminalSymbol(string.Format("{0}", i));
Encoding.Grammar = g;
BestKnownQuality = Math.Pow(2, NumberOfBits); // this is a benchmark problem (the best achievable quality is known for a given number of bits)
}
public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
if (NumberOfBits <= 0) throw new NotSupportedException("Number of bits must be larger than zero.");
if (NumberOfBits > 10) throw new NotSupportedException("Even parity does not support problems with number of bits > 10.");
var bs = Enumerable.Range(0, (int)Math.Pow(2, NumberOfBits));
var targets = bs.Select(b => CalcTarget(b, NumberOfBits));
var pred = Interpret(tree, bs);
return targets.Zip(pred, (t, p) => t == p ? 1 : 0).Sum(); // count number of correct predictions
}
private static bool CalcTarget(int b, int numBits) {
bool res = GetBits(b, 0);
for (byte i = 1; i < numBits; i++)
res = res ^ GetBits(b, i); // XOR
return res;
}
private static IEnumerable Interpret(ISymbolicExpressionTree tree, IEnumerable bs) {
// skip programRoot and startSymbol
return InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), bs);
}
private static IEnumerable InterpretRec(ISymbolicExpressionTreeNode node, IEnumerable bs) {
Func, IEnumerable> binaryEval =
(left, right, f) => InterpretRec(left, bs).Zip(InterpretRec(right, bs), f);
switch (node.Symbol.Name) {
case "AND": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x & y);
case "OR": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x | y);
case "NAND": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => !(x & y));
case "NOR": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => !(x | y));
default: {
byte bitPos;
if (byte.TryParse(node.Symbol.Name, out bitPos)) {
return bs.Select(b => GetBits(b, bitPos));
} else throw new NotSupportedException(string.Format("Found unexpected symbol {0}", node.Symbol.Name));
}
}
}
private static bool GetBits(int b, byte bitPos) {
return (b & (1 << bitPos)) != 0;
}
#region events
private void RegisterEventHandlers() {
NumberOfBitsParameter.Value.ValueChanged += (sender, args) => UpdateGrammar();
}
#endregion
}
}