Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineEvaluators/OnlineMeanAndVarianceCalculator.cs @ 5894

Last change on this file since 5894 was 5894, checked in by gkronber, 13 years ago

#1453: Added an ErrorState property to online evaluators to indicate if the result value is valid or if there has been an error in the calculation. Adapted all classes that use one of the online evaluators to check this property.

File size: 3.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24
25namespace HeuristicLab.Problems.DataAnalysis {
26  public class OnlineMeanAndVarianceCalculator {
27
28    private double m_oldM, m_newM, m_oldS, m_newS;
29    private int n;
30
31    private OnlineEvaluatorError varianceErrorState;
32    public OnlineEvaluatorError VarianceErrorState {
33      get { return varianceErrorState; }
34    }
35
36    public double Variance {
37      get {
38        return (n > 1) ? m_newS / (n - 1) : 0.0;
39      }
40    }
41
42    private OnlineEvaluatorError errorState;
43    public OnlineEvaluatorError PopulationVarianceErrorState {
44      get { return errorState; }
45    }
46    public double PopulationVariance {
47      get {
48        return (n > 0) ? m_newS / n : 0.0;
49      }
50    }
51
52    public OnlineEvaluatorError MeanErrorState {
53      get { return errorState; }
54    }
55    public double Mean {
56      get {
57        return (n > 0) ? m_newM : 0.0;
58      }
59    }
60
61    public int Count {
62      get { return n; }
63    }
64
65    public OnlineMeanAndVarianceCalculator() {
66      Reset();
67    }
68
69    public void Reset() {
70      n = 0;
71      errorState = OnlineEvaluatorError.InsufficientElementsAdded;
72      varianceErrorState = OnlineEvaluatorError.InsufficientElementsAdded;
73    }
74
75    public void Add(double x) {
76      if (double.IsNaN(x) || double.IsInfinity(x)) {
77        errorState = errorState | OnlineEvaluatorError.InvalidValueAdded;
78        varianceErrorState = errorState | OnlineEvaluatorError.InvalidValueAdded;
79      } else if (!errorState.HasFlag(OnlineEvaluatorError.InvalidValueAdded)) {
80        n++;
81        // See Knuth TAOCP vol 2, 3rd edition, page 232
82        if (n == 1) {
83          m_oldM = m_newM = x;
84          m_oldS = 0.0;
85          errorState = OnlineEvaluatorError.None; // n >= 1
86        } else {
87          varianceErrorState = OnlineEvaluatorError.None; // n >= 1
88          m_newM = m_oldM + (x - m_oldM) / n;
89          m_newS = m_oldS + (x - m_oldM) * (x - m_newM);
90
91          // set up for next iteration
92          m_oldM = m_newM;
93          m_oldS = m_newS;
94        }
95      }
96    }
97
98    public static void Calculate(IEnumerable<double> x, out double mean, out double variance, out OnlineEvaluatorError meanErrorState, out OnlineEvaluatorError varianceErrorState) {
99      OnlineMeanAndVarianceCalculator meanAndVarianceCalculator = new OnlineMeanAndVarianceCalculator();
100      foreach (double xi in x) {
101        meanAndVarianceCalculator.Add(xi);
102      }
103      mean = meanAndVarianceCalculator.Mean;
104      variance = meanAndVarianceCalculator.Variance;
105      meanErrorState = meanAndVarianceCalculator.MeanErrorState;
106      varianceErrorState = meanAndVarianceCalculator.VarianceErrorState;
107    }
108  }
109}
Note: See TracBrowser for help on using the repository browser.