#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; namespace HeuristicLab.Problems.DataAnalysis { public class OnlineMeanAndVarianceCalculator { private double m_oldM, m_newM, m_oldS, m_newS; private int n; private OnlineCalculatorError varianceErrorState; public OnlineCalculatorError VarianceErrorState { get { return varianceErrorState; } } public double Variance { get { return (n > 1) ? m_newS / (n - 1) : 0.0; } } private OnlineCalculatorError errorState; public OnlineCalculatorError PopulationVarianceErrorState { get { return errorState; } } public double PopulationVariance { get { return (n > 0) ? m_newS / n : 0.0; } } public OnlineCalculatorError MeanErrorState { get { return errorState; } } public double Mean { get { return (n > 0) ? m_newM : 0.0; } } public int Count { get { return n; } } public OnlineMeanAndVarianceCalculator() { Reset(); } public void Reset() { n = 0; errorState = OnlineCalculatorError.InsufficientElementsAdded; varianceErrorState = OnlineCalculatorError.InsufficientElementsAdded; } public void Add(double x) { if (double.IsNaN(x) || double.IsInfinity(x) || x > 1E13 || x < -1E13 || (errorState & OnlineCalculatorError.InvalidValueAdded) > 0) { errorState = errorState | OnlineCalculatorError.InvalidValueAdded; varianceErrorState = errorState | OnlineCalculatorError.InvalidValueAdded; } else { n++; // See Knuth TAOCP vol 2, 3rd edition, page 232 if (n == 1) { m_oldM = m_newM = x; m_oldS = 0.0; errorState = errorState & (~OnlineCalculatorError.InsufficientElementsAdded); // n >= 1 } else { varianceErrorState = varianceErrorState & (~OnlineCalculatorError.InsufficientElementsAdded); // n >= 2 m_newM = m_oldM + (x - m_oldM) / n; m_newS = m_oldS + (x - m_oldM) * (x - m_newM); // set up for next iteration m_oldM = m_newM; m_oldS = m_newS; } } } public static void Calculate(IEnumerable x, out double mean, out double variance, out OnlineCalculatorError meanErrorState, out OnlineCalculatorError varianceErrorState) { OnlineMeanAndVarianceCalculator meanAndVarianceCalculator = new OnlineMeanAndVarianceCalculator(); foreach (double xi in x) { meanAndVarianceCalculator.Add(xi); } mean = meanAndVarianceCalculator.Mean; variance = meanAndVarianceCalculator.Variance; meanErrorState = meanAndVarianceCalculator.MeanErrorState; varianceErrorState = meanAndVarianceCalculator.VarianceErrorState; } } }