1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.DataAnalysis.OnlineCalculators {
|
---|
27 | public class FOneScoreCalculator {
|
---|
28 | public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) {
|
---|
29 | if (originalValues.Distinct().Skip(2).Any()) {
|
---|
30 | throw new ArgumentException("F1 score can only be calculated for binary classification.");
|
---|
31 | }
|
---|
32 |
|
---|
33 | var confusionMatrix = ConfusionMatrixCalculator.Calculate(originalValues, estimatedValues, out errorState);
|
---|
34 | if (!errorState.Equals(OnlineCalculatorError.None)) {
|
---|
35 | return double.NaN;
|
---|
36 | }
|
---|
37 | return CalculateFOne(confusionMatrix);
|
---|
38 | }
|
---|
39 |
|
---|
40 | private static double CalculateFOne(double[,] confusionMatrix) {
|
---|
41 | double precision = confusionMatrix[0, 0] / (confusionMatrix[0, 0] + confusionMatrix[0, 1]);
|
---|
42 | double recall = confusionMatrix[0, 0] / (confusionMatrix[0, 0] + confusionMatrix[1, 0]);
|
---|
43 |
|
---|
44 | return 2 * ((precision * recall) / (precision + recall));
|
---|
45 | }
|
---|
46 | }
|
---|
47 | }
|
---|