#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using System; using HeuristicLab.Data; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents regression solutions that contain an ensemble of multiple regression models /// [StorableClass] [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")] // [Creatable("Data Analysis")] public class RegressionEnsembleSolution : RegressionSolution, IRegressionEnsembleSolution { public new IRegressionEnsembleModel Model { get { return (IRegressionEnsembleModel)base.Model; } } [Storable] private Dictionary trainingPartitions; [Storable] private Dictionary testPartitions; [StorableConstructor] protected RegressionEnsembleSolution(bool deserializing) : base(deserializing) { } protected RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner) : base(original, cloner) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); foreach (var pair in original.trainingPartitions) { trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } foreach (var pair in original.testPartitions) { testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } RecalculateResults(); } public RegressionEnsembleSolution(IEnumerable models, IRegressionProblemData problemData) : base(new RegressionEnsembleModel(models), new RegressionEnsembleProblemData(problemData)) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); foreach (var model in models) { trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone(); testPartitions[model] = (IntRange)problemData.TestPartition.Clone(); } RecalculateResults(); } public RegressionEnsembleSolution(IEnumerable models, IRegressionProblemData problemData, IEnumerable trainingPartitions, IEnumerable testPartitions) : base(new RegressionEnsembleModel(models), new RegressionEnsembleProblemData(problemData)) { this.trainingPartitions = new Dictionary(); this.testPartitions = new Dictionary(); var modelEnumerator = models.GetEnumerator(); var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); var testPartitionEnumerator = testPartitions.GetEnumerator(); while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone(); this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone(); } if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { throw new ArgumentException(); } RecalculateResults(); } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionEnsembleSolution(this, cloner); } public override IEnumerable EstimatedTrainingValues { get { var rows = ProblemData.TrainingIndizes; var estimatedValuesEnumerators = (from model in Model.Models select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() }) .ToList(); var rowsEnumerator = rows.GetEnumerator(); // aggregate to make sure that MoveNext is called for all enumerators while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) { int currentRow = rowsEnumerator.Current; var selectedEnumerators = from pair in estimatedValuesEnumerators where RowIsTrainingForModel(currentRow, pair.Model) && !RowIsTestForModel(currentRow, pair.Model) select pair.EstimatedValuesEnumerator; yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current)); } } } public override IEnumerable EstimatedTestValues { get { var rows = ProblemData.TestIndizes; var estimatedValuesEnumerators = (from model in Model.Models select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() }) .ToList(); var rowsEnumerator = ProblemData.TestIndizes.GetEnumerator(); // aggregate to make sure that MoveNext is called for all enumerators while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) { int currentRow = rowsEnumerator.Current; var selectedEnumerators = from pair in estimatedValuesEnumerators where RowIsTestForModel(currentRow, pair.Model) select pair.EstimatedValuesEnumerator; yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current)); } } } private bool RowIsTrainingForModel(int currentRow, IRegressionModel model) { return trainingPartitions == null || !trainingPartitions.ContainsKey(model) || (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End); } private bool RowIsTestForModel(int currentRow, IRegressionModel model) { return testPartitions == null || !testPartitions.ContainsKey(model) || (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End); } public override IEnumerable GetEstimatedValues(IEnumerable rows) { return from xs in GetEstimatedValueVectors(ProblemData.Dataset, rows) select AggregateEstimatedValues(xs); } public IEnumerable> GetEstimatedValueVectors(Dataset dataset, IEnumerable rows) { var estimatedValuesEnumerators = (from model in Model.Models select model.GetEstimatedValues(dataset, rows).GetEnumerator()) .ToList(); while (estimatedValuesEnumerators.All(en => en.MoveNext())) { yield return from enumerator in estimatedValuesEnumerators select enumerator.Current; } } private double AggregateEstimatedValues(IEnumerable estimatedValues) { return estimatedValues.DefaultIfEmpty(double.NaN).Average(); } } }