#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
[StorableClass]
public abstract class ClassificationSolutionBase : DataAnalysisSolution, IClassificationSolution {
private const string TrainingAccuracyResultName = "Accuracy (training)";
private const string TestAccuracyResultName = "Accuracy (test)";
private const string TrainingNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (training)";
private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)";
private const string ClassificationPerformanceMeasuresResultName = "Classification Performance Measures";
public new IClassificationModel Model {
get { return (IClassificationModel)base.Model; }
protected set { base.Model = value; }
}
public new IClassificationProblemData ProblemData {
get { return (IClassificationProblemData)base.ProblemData; }
set { base.ProblemData = value; }
}
#region Results
public double TrainingAccuracy {
get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
}
public double TestAccuracy {
get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
}
public double TrainingNormalizedGiniCoefficient {
get { return ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value; }
protected set { ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value = value; }
}
public double TestNormalizedGiniCoefficient {
get { return ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value; }
protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; }
}
public ClassificationPerformanceMeasuresResultCollection ClassificationPerformanceMeasures {
get { return ((ClassificationPerformanceMeasuresResultCollection)this[ClassificationPerformanceMeasuresResultName].Value); }
protected set { (this[ClassificationPerformanceMeasuresResultName].Value) = value; }
}
#endregion
[StorableConstructor]
protected ClassificationSolutionBase(bool deserializing) : base(deserializing) { }
protected ClassificationSolutionBase(ClassificationSolutionBase original, Cloner cloner)
: base(original, cloner) {
}
protected ClassificationSolutionBase(IClassificationModel model, IClassificationProblemData problemData)
: base(model, problemData) {
Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n
In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.",
new ClassificationPerformanceMeasuresResultCollection()));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!this.ContainsKey(TrainingNormalizedGiniCoefficientResultName))
Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
if (!this.ContainsKey(TestNormalizedGiniCoefficientResultName))
Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
if (!this.ContainsKey(ClassificationPerformanceMeasuresResultName)) {
Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n
In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.",
new ClassificationPerformanceMeasuresResultCollection()));
CalculateClassificationResults();
}
}
protected void CalculateClassificationResults() {
double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray();
double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray();
var positiveClassName = ProblemData.PositiveClass;
double positiveClassValue = ProblemData.GetClassValue(positiveClassName);
ClassificationPerformanceMeasuresCalculator trainingPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, positiveClassValue);
ClassificationPerformanceMeasuresCalculator testPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, positiveClassValue);
OnlineCalculatorError errorState;
double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
TrainingAccuracy = trainingAccuracy;
TestAccuracy = testAccuracy;
double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) trainingNormalizedGini = double.NaN;
double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) testNormalizedGini = double.NaN;
TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
TestNormalizedGiniCoefficient = testNormalizedGini;
trainingPerformanceCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues);
if (trainingPerformanceCalculator.ErrorState == OnlineCalculatorError.None)
ClassificationPerformanceMeasures.SetTrainingResults(trainingPerformanceCalculator);
testPerformanceCalculator.Calculate(originalTestClassValues, estimatedTestClassValues);
if (testPerformanceCalculator.ErrorState == OnlineCalculatorError.None)
ClassificationPerformanceMeasures.SetTestResults(testPerformanceCalculator);
}
public abstract IEnumerable EstimatedClassValues { get; }
public abstract IEnumerable EstimatedTrainingClassValues { get; }
public abstract IEnumerable EstimatedTestClassValues { get; }
public abstract IEnumerable GetEstimatedClassValues(IEnumerable rows);
protected override void RecalculateResults() {
CalculateClassificationResults();
}
}
}