#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
public class SimpleMSEEvaluator : SimpleEvaluator {
public ILookupParameter MeanSquaredErrorParameter {
get { return (ILookupParameter)Parameters["MeanSquaredError"]; }
}
public SimpleMSEEvaluator() {
Parameters.Add(new LookupParameter("MeanSquaredError", "The mean squared error of estimated values."));
}
protected override void Apply(DoubleMatrix values) {
MeanSquaredErrorParameter.ActualValue = new DoubleValue(Calculate(values));
}
public static double Calculate(IEnumerable original, IEnumerable estimated) {
double sse = 0.0;
int cnt = 0;
var originalEnumerator = original.GetEnumerator();
var estimatedEnumerator = estimated.GetEnumerator();
while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
double e = estimatedEnumerator.Current;
double o = originalEnumerator.Current;
if (!double.IsNaN(e) && !double.IsInfinity(e) &&
!double.IsNaN(o) && !double.IsInfinity(o)) {
double error = e - o;
sse += error * error;
cnt++;
}
}
if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
} else if (cnt == 0) {
throw new ArgumentException("Mean squared errors is not defined for input vectors of NaN or Inf");
} else {
double mse = sse / cnt;
return mse;
}
}
public static double Calculate(DoubleMatrix values) {
var original = from row in Enumerable.Range(0, values.Rows)
select values[row, ORIGINAL_INDEX];
var estimated = from row in Enumerable.Range(0, values.Rows)
select values[row, ESTIMATION_INDEX];
return Calculate(original, estimated);
}
}
}