#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Threading.Tasks;
using System.Windows.Forms;
using HeuristicLab.Common;
using HeuristicLab.MainForm;
using HeuristicLab.Visualization.ChartControlsExtensions;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Target Response Gradients")]
[Content(typeof(IRegressionSolution))]
public partial class RegressionSolutionTargetResponseGradientView : DataAnalysisSolutionEvaluationView {
private readonly Dictionary gradientCharts;
private readonly Dictionary densityCharts;
private readonly Dictionary groupingPanels;
private const int Points = 200;
private int MaxColumns = 4;
private IEnumerable VisibleVariables {
get {
foreach (ListViewItem item in variableListView.CheckedItems)
yield return item.Text;
}
}
private IEnumerable VisibleGradientCharts {
get { return VisibleVariables.Select(v => gradientCharts[v]); }
}
private IEnumerable VisibleDensityCharts {
get { return VisibleVariables.Select(v => densityCharts[v]); }
}
private IEnumerable VisibleChartsPanels {
get { return VisibleVariables.Select(v => groupingPanels[v]); }
}
public RegressionSolutionTargetResponseGradientView() {
InitializeComponent();
gradientCharts = new Dictionary();
densityCharts = new Dictionary();
groupingPanels = new Dictionary();
limitView.Content = new DoubleLimit(0, 1);
limitView.Content.ValueChanged += limit_ValueChanged;
densityComboBox.SelectedIndex = 1; // select Training
// Avoid additional horizontal scrollbar
var vertScrollWidth = SystemInformation.VerticalScrollBarWidth;
scrollPanel.Padding = new Padding(0, 0, vertScrollWidth, 0);
scrollPanel.AutoScroll = true;
}
public new IRegressionSolution Content {
get { return (IRegressionSolution)base.Content; }
set { base.Content = value; }
}
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += solution_ModelChanged;
}
protected override void DeregisterContentEvents() {
Content.ModelChanged -= solution_ModelChanged;
base.DeregisterContentEvents();
}
protected override void OnContentChanged() {
base.OnContentChanged();
if (Content == null) return;
var problemData = Content.ProblemData;
// Init Y-axis range
double min = double.MaxValue, max = double.MinValue;
var trainingTarget = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
foreach (var t in trainingTarget) {
if (t < min) min = t;
if (t > max) max = t;
}
double range = max - min;
const double scale = 1.0 / 3.0;
double axisMin, axisMax, axisInterval;
ChartUtil.CalculateAxisInterval(min - scale * range, max + scale * range, 5, out axisMin, out axisMax, out axisInterval);
automaticYAxisCheckBox.Checked = false;
limitView.ReadOnly = false;
limitView.Content.Lower = axisMin;
limitView.Content.Upper = axisMax;
// create dataset
var allowedInputVariables = Content.ProblemData.AllowedInputVariables;
var variableValues = allowedInputVariables.Select(x => new List { problemData.Dataset.GetDoubleValues(x, problemData.TrainingIndices).Median() });
var sharedFixedVariables = new ModifiableDataset(allowedInputVariables, variableValues);
// create controls
gradientCharts.Clear();
densityCharts.Clear();
groupingPanels.Clear();
foreach (var variableName in allowedInputVariables) {
var gradientChart = CreateGradientChart(variableName, sharedFixedVariables);
gradientCharts.Add(variableName, gradientChart);
var densityChart = new DensityChart() {
Anchor = AnchorStyles.Left | AnchorStyles.Top | AnchorStyles.Right,
Margin = Padding.Empty,
Height = 12,
Visible = false,
Top = (int)(gradientChart.Height * 0.1),
};
densityCharts.Add(variableName, densityChart);
gradientChart.ZoomChanged += (o, e) => {
var gradient = (GradientChart)o;
var density = densityCharts[gradient.FreeVariable];
density.Visible = densityComboBox.SelectedIndex != 0 && !gradient.IsZoomed;
if (density.Visible)
UpdateDensityChart(density, gradient.FreeVariable);
};
gradientChart.SizeChanged += (o, e) => {
var gradient = (GradientChart)o;
var density = densityCharts[gradient.FreeVariable];
density.Top = (int)(gradient.Height * 0.1);
};
// Initially, the inner plot areas are not initialized for hidden charts (scollpanel, ...)
// This event handler listens for the paint event once (where everything is already initialized) to do some manual layouting.
gradientChart.ChartPostPaint += OnGradientChartOnChartPostPaint;
var panel = new Panel() {
Dock = DockStyle.Fill,
Margin = Padding.Empty,
BackColor = Color.White
};
panel.Controls.Add(densityChart);
panel.Controls.Add(gradientChart);
groupingPanels.Add(variableName, panel);
}
// update variable list
variableListView.ItemChecked -= variableListView_ItemChecked;
variableListView.Items.Clear();
foreach (var variable in allowedInputVariables)
variableListView.Items.Add(key: variable, text: variable, imageIndex: 0);
foreach (var variable in Content.Model.VariablesUsedForPrediction)
variableListView.Items[variable].Checked = true;
variableListView.ItemChecked += variableListView_ItemChecked;
RecalculateAndRelayoutCharts();
}
private void OnGradientChartOnChartPostPaint(object o, EventArgs e) {
var gradient = (GradientChart)o;
var density = densityCharts[gradient.FreeVariable];
density.Width = gradient.Width;
var gcPlotPosition = gradient.InnerPlotPosition;
density.Left = (int)(gcPlotPosition.X / 100.0 * gradient.Width);
density.Width = (int)(gcPlotPosition.Width / 100.0 * gradient.Width);
gradient.UpdateTitlePosition();
// removed after succesful layouting due to performance reasons
if (gcPlotPosition.Width != 0)
gradient.ChartPostPaint -= OnGradientChartOnChartPostPaint;
}
private async void RecalculateAndRelayoutCharts() {
foreach (var variable in VisibleVariables) {
var gradientChart = gradientCharts[variable];
await gradientChart.RecalculateAsync();
}
gradientChartTableLayout.SuspendLayout();
SetupYAxis();
ReOrderControls();
SetStyles();
gradientChartTableLayout.ResumeLayout();
gradientChartTableLayout.Refresh();
foreach (var variable in VisibleVariables) {
var densityChart = densityCharts[variable];
UpdateDensityChart(densityChart, variable);
}
}
private GradientChart CreateGradientChart(string variableName, ModifiableDataset sharedFixedVariables) {
var gradientChart = new GradientChart {
Dock = DockStyle.Fill,
Margin = Padding.Empty,
ShowLegend = false,
ShowCursor = true,
ShowConfigButton = false,
YAxisTicks = 5,
};
gradientChart.VariableValueChanged += async (o, e) => {
var recalculations = VisibleGradientCharts.Except(new[] { (GradientChart)o }).Select(async chart => {
await chart.RecalculateAsync(updateOnFinish: false, resetYAxis: false);
}).ToList();
await Task.WhenAll(recalculations);
if (recalculations.All(t => t.IsCompleted))
SetupYAxis();
};
gradientChart.Configure(new[] { Content }, sharedFixedVariables, variableName, Points);
gradientChart.SolutionAdded += gradientChart_SolutionAdded;
gradientChart.SolutionRemoved += gradientChart_SolutionRemoved;
return gradientChart;
}
private void SetupYAxis() {
double axisMin, axisMax;
if (automaticYAxisCheckBox.Checked) {
double min = double.MaxValue, max = double.MinValue;
foreach (var chart in VisibleGradientCharts) {
if (chart.YMin < min) min = chart.YMin;
if (chart.YMax > max) max = chart.YMax;
}
double axisInterval;
ChartUtil.CalculateAxisInterval(min, max, 5, out axisMin, out axisMax, out axisInterval);
} else {
axisMin = limitView.Content.Lower;
axisMax = limitView.Content.Upper;
}
foreach (var chart in VisibleGradientCharts) {
chart.FixedYAxisMin = axisMin;
chart.FixedYAxisMax = axisMax;
}
}
// reorder chart controls so that they always appear in the same order as in the list view
// the table layout containing the controls should be suspended before calling this method
private void ReOrderControls() {
var tl = gradientChartTableLayout;
tl.Controls.Clear();
int row = 0, column = 0;
foreach (var v in VisibleVariables) {
var chartsPanel = groupingPanels[v];
tl.Controls.Add(chartsPanel, column, row);
var chart = gradientCharts[v];
chart.YAxisTitle = column == 0 ? Content.ProblemData.TargetVariable : string.Empty;
column++;
if (column == MaxColumns) {
row++;
column = 0;
}
}
}
private void SetStyles() {
var tl = gradientChartTableLayout;
tl.RowStyles.Clear();
tl.ColumnStyles.Clear();
int numVariables = VisibleVariables.Count();
if (numVariables == 0)
return;
// set column styles
tl.ColumnCount = Math.Min(numVariables, MaxColumns);
for (int c = 0; c < tl.ColumnCount; c++)
tl.ColumnStyles.Add(new ColumnStyle(SizeType.Percent, 100.0f / tl.ColumnCount));
// set row styles
tl.RowCount = (int)Math.Ceiling((double)numVariables / tl.ColumnCount);
var columnWidth = tl.Width / tl.ColumnCount; // assume all columns have the same width
var rowHeight = (int)(0.8 * columnWidth);
for (int r = 0; r < tl.RowCount; r++)
tl.RowStyles.Add(new RowStyle(SizeType.Absolute, rowHeight));
}
private async void gradientChart_SolutionAdded(object sender, EventArgs e) {
var solution = e.Value;
foreach (var chart in gradientCharts.Values) {
if (sender == chart) continue;
await chart.AddSolutionAsync(solution);
}
}
private async void gradientChart_SolutionRemoved(object sender, EventArgs e) {
var solution = e.Value;
foreach (var chart in gradientCharts.Values) {
if (sender == chart) continue;
await chart.RemoveSolutionAsync(solution);
}
}
private async void variableListView_ItemChecked(object sender, ItemCheckedEventArgs e) {
var item = e.Item;
var variable = item.Text;
var gradientChart = gradientCharts[variable];
var chartsPanel = groupingPanels[variable];
var tl = gradientChartTableLayout;
tl.SuspendLayout();
if (item.Checked) {
tl.Controls.Add(chartsPanel);
await gradientChart.RecalculateAsync();
} else {
tl.Controls.Remove(chartsPanel);
}
if (tl.Controls.Count > 0) {
SetupYAxis();
ReOrderControls();
SetStyles();
}
tl.ResumeLayout();
tl.Refresh();
densityComboBox_SelectedIndexChanged(this, EventArgs.Empty);
}
private void automaticYAxisCheckBox_CheckedChanged(object sender, EventArgs e) {
limitView.ReadOnly = automaticYAxisCheckBox.Checked;
SetupYAxis();
gradientChartTableLayout.Refresh();
densityComboBox_SelectedIndexChanged(this, EventArgs.Empty); // necessary to realign the density plots
}
private void limit_ValueChanged(object sender, EventArgs e) {
if (automaticYAxisCheckBox.Checked)
return;
SetupYAxis();
gradientChartTableLayout.Refresh();
densityComboBox_SelectedIndexChanged(this, EventArgs.Empty); // necessary to realign the density plots
}
private void densityComboBox_SelectedIndexChanged(object sender, EventArgs e) {
if (Content == null)
return;
int si = densityComboBox.SelectedIndex;
if (si == 0) {
foreach (var densityChart in densityCharts.Values)
densityChart.Visible = false;
} else {
var indices = GetDensityIndices(si).ToList();
foreach (var entry in densityCharts) {
var variableName = entry.Key;
var densityChart = entry.Value;
if (!VisibleVariables.Contains(variableName) || gradientCharts[variableName].IsZoomed)
continue;
UpdateDensityChart(densityChart, variableName, indices);
}
}
}
private IEnumerable GetDensityIndices(int selectedIndex) {
var problemData = Content.ProblemData;
return
selectedIndex == 1 ? problemData.TrainingIndices :
selectedIndex == 2 ? problemData.TestIndices :
problemData.AllIndices;
}
private void UpdateDensityChart(DensityChart densityChart, string variable, IList indices = null) {
if (densityComboBox.SelectedIndex == 0)
return;
if (indices == null) {
indices = GetDensityIndices(densityComboBox.SelectedIndex).ToList();
}
var data = Content.ProblemData.Dataset.GetDoubleValues(variable, indices).ToList();
var gradientChart = gradientCharts[variable];
var min = gradientChart.FixedXAxisMin;
var max = gradientChart.FixedXAxisMax;
var buckets = gradientChart.DrawingSteps;
if (min.HasValue && max.HasValue) {
densityChart.UpdateChart(data, min.Value, max.Value, buckets);
densityChart.Width = gradientChart.Width;
var gcPlotPosition = gradientChart.InnerPlotPosition;
densityChart.Left = (int)(gcPlotPosition.X / 100.0 * gradientChart.Width);
densityChart.Width = (int)(gcPlotPosition.Width / 100.0 * gradientChart.Width);
densityChart.Visible = true;
}
gradientChart.UpdateTitlePosition();
}
private void columnsNumericUpDown_ValueChanged(object sender, EventArgs e) {
MaxColumns = (int)columnsNumericUpDown.Value;
int columns = Math.Min(VisibleVariables.Count(), MaxColumns);
if (columns > 0) {
var tl = gradientChartTableLayout;
MaxColumns = columns;
tl.SuspendLayout();
ReOrderControls();
SetStyles();
tl.ResumeLayout();
tl.Refresh();
densityComboBox_SelectedIndexChanged(this, EventArgs.Empty);
}
}
private async void solution_ModelChanged(object sender, EventArgs e) {
foreach (var variable in VisibleVariables) {
var gradientChart = gradientCharts[variable];
var densityChart = densityCharts[variable];
// recalculate and refresh
await gradientChart.RecalculateAsync();
gradientChart.Refresh();
UpdateDensityChart(densityChart, variable);
}
}
}
}