#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.MainForm;
using HeuristicLab.MainForm.WindowsForms;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Cluster Visualization")]
[Content(typeof(IClusteringSolution), IsDefaultView = false)]
public partial class ClusteringSolutionVisualizationView : DataAnalysisSolutionEvaluationView {
private ViewHost viewHost = new ViewHost();
private ScatterPlot scatterPlot = new ScatterPlot();
public new IClusteringSolution Content {
get { return (IClusteringSolution)base.Content; }
set { base.Content = value; }
}
public ClusteringSolutionVisualizationView() {
InitializeComponent();
viewHost.Dock = DockStyle.Fill;
splitContainer.Panel2.Controls.Add(viewHost);
rangeComboBox.SelectedIndex = 0;
}
protected override void OnContentChanged() {
base.OnContentChanged();
if (Content == null) {
viewHost.Content = null;
scatterPlot.Rows.Clear();
} else {
UpdateScatterPlot();
viewHost.Content = scatterPlot;
}
}
protected override void SetEnabledStateOfControls() {
base.SetEnabledStateOfControls();
rangeComboBox.Enabled = Content != null;
}
private void UpdateScatterPlot() {
scatterPlot.Rows.Clear();
IEnumerable range = null;
if (rangeComboBox.SelectedIndex == 0) range = Content.ProblemData.TrainingIndices;
else if (rangeComboBox.SelectedIndex == 1) range = Content.ProblemData.TestIndices;
else range = Enumerable.Range(0, Content.ProblemData.Dataset.Rows);
IDictionary> classes = Content.Model.GetClusterValues(Content.ProblemData.Dataset, Enumerable.Range(0, Content.ProblemData.Dataset.Rows))
.Select((v, i) => new { Row = i, Cluster = (double)v })
.ToDictionary(x => x.Row, y => Tuple.Create(y.Cluster, "Cluster " + y.Cluster));
var rows = classes.Values.Select(x => x.Item2).Distinct().ToDictionary(c => c, c => new ScatterPlotDataRow(c, string.Empty, Enumerable.Empty>()));
var reduced = PCAReduce(Content.ProblemData.Dataset, range, Content.ProblemData.AllowedInputVariables);
int idx = 0;
foreach (var r in range) {
rows[classes[r].Item2].Points.Add(new Point2D(reduced[idx, 0], reduced[idx, 1]));
idx++;
}
scatterPlot.Rows.AddRange(rows.Values);
}
private static double[,] PCAReduce(Dataset dataset, IEnumerable rows, IEnumerable variables) {
var instances = rows.ToArray();
var attributes = variables.ToArray();
var data = new double[instances.Length, attributes.Length + 1];
for (int j = 0; j < attributes.Length; j++) {
int i = 0;
var values = dataset.GetDoubleValues(attributes[j], instances);
foreach (var v in values) {
data[i++, j] = v;
}
}
int info;
double[] variances;
var matrix = new double[0, 0];
alglib.pcabuildbasis(data, instances.Length, attributes.Length, out info, out variances, out matrix);
var result = new double[instances.Length, 2];
int r = 0;
foreach (var inst in instances) {
int i = 0;
foreach (var attrib in attributes) {
double val = dataset.GetDoubleValue(attrib, inst);
for (int j = 0; j < result.GetLength(1); j++)
result[r, j] += val * matrix[i, j];
i++;
}
r++;
}
return result;
}
#region Event Handlers
private void rangeComboBox_SelectedIndexChanged(object sender, System.EventArgs e) {
if (Content != null) UpdateScatterPlot();
}
#endregion
}
}