#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { public class SymbolicExpressionTreeBacktransformator : IModelBacktransformator { private readonly ITransformationMapper transformationMapper; public SymbolicExpressionTreeBacktransformator(ITransformationMapper transformationMapper) { this.transformationMapper = transformationMapper; } public IDataAnalysisModel Backtransform(IDataAnalysisModel model, IEnumerable transformations, string targetVariable) { var symbolicModel = (ISymbolicDataAnalysisModel)model.Clone(); foreach (var transformation in transformations.Reverse()) { ApplyBacktransformation(transformation, symbolicModel.SymbolicExpressionTree, targetVariable); } return symbolicModel; } private void ApplyBacktransformation(ITransformation transformation, ISymbolicExpressionTree symbolicExpressionTree, string targetVariable) { if (transformation.Column != targetVariable) { var variableNodes = symbolicExpressionTree.IterateNodesBreadth() .OfType() .Where(n => n.VariableName == transformation.Column); ApplyRegularBacktransformation(transformation, variableNodes); } else if (!(transformation is CopyColumnTransformation)) { ApplyInverseBacktransformation(transformation, symbolicExpressionTree); } } private void ApplyRegularBacktransformation(ITransformation transformation, IEnumerable variableNodes) { foreach (var variableNode in variableNodes) { // generate new subtrees because same subtree cannot be added more than once var transformationTree = transformationMapper.GenerateModel(transformation); SwapVariableWithTree(variableNode, transformationTree); } } private void ApplyInverseBacktransformation(ITransformation transformation, ISymbolicExpressionTree symbolicExpressionTree) { var startSymbol = symbolicExpressionTree.Root.GetSubtree(0); var modelTree = startSymbol.GetSubtree(0); startSymbol.RemoveSubtree(0); var transformationTree = transformationMapper.GenerateInverseModel(transformation); var variableNode = transformationTree.IterateNodesBreadth() .OfType() .Single(n => n.VariableName == transformation.Column); SwapVariableWithTree(variableNode, modelTree); startSymbol.AddSubtree(transformationTree); } private void SwapVariableWithTree(VariableTreeNode variableNode, ISymbolicExpressionTreeNode treeNode) { var parent = variableNode.Parent; int index = parent.IndexOfSubtree(variableNode); parent.RemoveSubtree(index); if (!variableNode.Weight.IsAlmost(1.0)) treeNode = CreateNodeFromWeight(treeNode, variableNode); parent.InsertSubtree(index, treeNode); } private ISymbolicExpressionTreeNode CreateNodeFromWeight(ISymbolicExpressionTreeNode transformationTree, VariableTreeNode variableNode) { var multiplicationNode = new SymbolicExpressionTreeNode(new Multiplication()); multiplicationNode.AddSubtree(new ConstantTreeNode(new Constant()) { Value = variableNode.Weight }); multiplicationNode.AddSubtree(transformationTree); return multiplicationNode; } } }