#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("ContextAwareCrossover", "An operator which deterministically choses the best insertion point for a randomly selected node:\n" +
"- Take two parent individuals P0 and P1\n" +
"- Randomly choose a node N from P1\n" +
"- Test all crossover points from P0 to determine the best location for N to be inserted")]
public sealed class SymbolicDataAnalysisExpressionContextAwareCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData {
[StorableConstructor]
private SymbolicDataAnalysisExpressionContextAwareCrossover(bool deserializing) : base(deserializing) { }
private SymbolicDataAnalysisExpressionContextAwareCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicDataAnalysisExpressionContextAwareCrossover()
: base() {
name = "ContextAwareCrossover";
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisExpressionContextAwareCrossover(this, cloner);
}
public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
if (this.ExecutionContext == null)
throw new InvalidOperationException("ExecutionContext not set.");
List rows = GenerateRowsToEvaluate().ToList();
T problemData = ProblemDataParameter.ActualValue;
ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator = EvaluatorParameter.ActualValue;
return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
}
///
/// Takes two parent individuals P0 and P1.
/// Randomly choose a node i from the second parent, then test all possible crossover points from the first parent to determine the best location for i to be inserted.
///
public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context,
ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator, T problemData, List rows, int maxDepth, int maxLength) {
// randomly choose a node from the second parent
var possibleChildren = new List();
parent1.Root.ForEachNodePostfix((n) => {
if (n.Parent != null && n.Parent != parent1.Root)
possibleChildren.Add(n);
});
var selectedChild = possibleChildren.SelectRandom(random);
var crossoverPoints = new List();
var qualities = new List>();
parent0.Root.ForEachNodePostfix((n) => {
if (n.Parent != null && n.Parent != parent0.Root) {
var totalDepth = parent0.Root.GetBranchLevel(n) + selectedChild.GetDepth();
var totalLength = parent0.Root.GetLength() - n.GetLength() + selectedChild.GetLength();
if (totalDepth <= maxDepth && totalLength <= maxLength) {
var crossoverPoint = new CutPoint(n.Parent, n);
if (crossoverPoint.IsMatchingPointType(selectedChild))
crossoverPoints.Add(crossoverPoint);
}
}
});
if (crossoverPoints.Any()) {
// this loop will perform two swap operations per each crossover point
foreach (var crossoverPoint in crossoverPoints) {
// save the old parent so we can restore it later
var parent = selectedChild.Parent;
// perform a swap and check the quality of the solution
Swap(crossoverPoint, selectedChild);
IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope);
double quality = evaluator.Evaluate(childContext, parent0, problemData, rows);
qualities.Add(new Tuple(crossoverPoint, quality));
// restore the correct parent
selectedChild.Parent = parent;
// swap the replaced subtree back into the tree so that the structure is preserved
Swap(crossoverPoint, crossoverPoint.Child);
}
qualities.Sort((a, b) => a.Item2.CompareTo(b.Item2)); // assuming this sorts the list in ascending order
var crossoverPoint0 = evaluator.Maximization ? qualities.Last().Item1 : qualities.First().Item1;
// swap the node that would create the best offspring
// this last swap makes a total of (2 * crossoverPoints.Count() + 1) swap operations.
Swap(crossoverPoint0, selectedChild);
}
return parent0;
}
}
}