#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using AutoDiff;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
/// static class which provides methods for all converters for trees for convenience
public static class Convert {
public static void ConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable,
out List parameters, out double[] initialConstants,
out TreeToAutoDiffTermConverter.ParametricFunction func,
out TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad) {
var success = TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, makeVariableWeightsVariable, out parameters,
out initialConstants, out func, out func_grad);
if (!success) throw new ArgumentException("Cannot convert tree to AutoDiff term.");
}
public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
var simplifier = new TreeSimplifier();
return simplifier.Simplify(tree);
}
public static ISymbolicExpressionTree CreateLinearModel(string[] variableNames, double[] coefficients,
double @const = 0) {
return LinearModelToTreeConverter.CreateTree(variableNames, coefficients, @const);
}
public static ISymbolicExpressionTree CreateLinearModel(string[] variableNames, int[] lags, double[] coefficients,
double @const = 0) {
return LinearModelToTreeConverter.CreateTree(variableNames, coefficients, @const);
}
}
}