#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
[Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic time-series prognosis solution.")]
[StorableClass]
public class SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator : SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator {
[StorableConstructor]
protected SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
protected SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator(SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator(this, cloner);
}
public SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator() : base() { }
public override bool Maximization { get { return true; } }
public override IOperation Apply() {
var solution = SymbolicExpressionTreeParameter.ActualValue;
IEnumerable rows = GenerateRowsToEvaluate();
double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
QualityParameter.ActualValue = new DoubleValue(quality);
return base.Apply();
}
public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable rows) {
IEnumerable estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
IEnumerable originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
OnlineCalculatorError errorState;
double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
if (errorState != OnlineCalculatorError.None) return 0.0;
else return r2;
}
public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, ITimeSeriesPrognosisProblemData problemData, IEnumerable rows) {
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
EstimationLimitsParameter.ExecutionContext = context;
double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
EstimationLimitsParameter.ExecutionContext = null;
return r2;
}
}
}