#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Views;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views {
public partial class InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView {
private readonly ConstantTreeNode constantNode;
private readonly SymbolicExpressionTree tempTree;
public new SymbolicTimeSeriesPrognosisSolution Content {
get { return (SymbolicTimeSeriesPrognosisSolution)base.Content; }
set { base.Content = value; }
}
public InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView()
: base() {
InitializeComponent();
this.Caption = "Interactive Time-Series Prognosis Solution Simplifier";
constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
root.AddSubtree(start);
tempTree = new SymbolicExpressionTree(root);
}
protected override Dictionary> CalculateImpactAndReplacementValues(ISymbolicExpressionTree tree) {
var interpreter = Content.Model.Interpreter;
var rows = Content.ProblemData.TrainingIndices;
var dataset = Content.ProblemData.Dataset;
var targetVariable = Content.ProblemData.TargetVariable;
var targetValues = dataset.GetDoubleValues(targetVariable, rows);
var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).ToArray();
var impactAndReplacementValues = new Dictionary>();
List nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
OnlineCalculatorError errorState;
double originalR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalOutput, out errorState);
if (errorState != OnlineCalculatorError.None) originalR2 = 0.0;
foreach (ISymbolicExpressionTreeNode node in nodes) {
var parent = node.Parent;
constantNode.Value = CalculateReplacementValue(node, tree);
ISymbolicExpressionTreeNode replacementNode = constantNode;
SwitchNode(parent, node, replacementNode);
var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows);
double newR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, newOutput, out errorState);
if (errorState != OnlineCalculatorError.None) newR2 = 0.0;
// impact = 0 if no change
// impact < 0 if new solution is better
// impact > 0 if new solution is worse
double impact = originalR2 - newR2;
impactAndReplacementValues[node] = new Tuple(impact, constantNode.Value);
SwitchNode(parent, replacementNode, node);
}
return impactAndReplacementValues;
}
protected override void UpdateModel(ISymbolicExpressionTree tree) {
var model = new SymbolicTimeSeriesPrognosisModel(tree, Content.Model.Interpreter);
model.Scale(Content.ProblemData);
Content.Model = model;
}
protected override Dictionary CalculateReplacementValues(ISymbolicExpressionTree tree) {
var replacementValues = new Dictionary();
foreach (var componentBranch in tree.Root.GetSubtree(0).Subtrees)
foreach (ISymbolicExpressionTreeNode node in componentBranch.IterateNodesPrefix()) {
replacementValues[node] = CalculateReplacementValue(node, tree);
}
return replacementValues;
}
protected override Dictionary CalculateImpactValues(ISymbolicExpressionTree tree) {
var impactAndReplacementValues = CalculateImpactAndReplacementValues(tree);
return impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item1); // item1 of the tuple is the impact value
}
private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) {
// remove old ADFs
while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1);
// clone ADFs of source tree
for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
}
var start = tempTree.Root.GetSubtree(0);
while (start.SubtreeCount > 0) start.RemoveSubtree(0);
start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
var interpreter = Content.Model.Interpreter;
var rows = Content.ProblemData.TrainingIndices;
var allPrognosedValues = interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows);
return allPrognosedValues.Median();
}
private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
for (int i = 0; i < root.SubtreeCount; i++) {
if (root.GetSubtree(i) == oldBranch) {
root.RemoveSubtree(i);
root.InsertSubtree(i, newBranch);
return;
}
}
}
protected override void btnOptimizeConstants_Click(object sender, EventArgs e) {
throw new NotImplementedException();
}
}
}