#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Problems.DataAnalysis.Symbolic.Views; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views { public partial class InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView { private readonly ConstantTreeNode constantNode; private readonly SymbolicExpressionTree tempTree; public new SymbolicTimeSeriesPrognosisSolution Content { get { return (SymbolicTimeSeriesPrognosisSolution)base.Content; } set { base.Content = value; } } public InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView() : base() { InitializeComponent(); this.Caption = "Interactive Time-Series Prognosis Solution Simplifier"; constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode()); ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode(); ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode(); root.AddSubtree(start); tempTree = new SymbolicExpressionTree(root); } protected override Dictionary> CalculateImpactAndReplacementValues(ISymbolicExpressionTree tree) { var interpreter = Content.Model.Interpreter; var rows = Content.ProblemData.TrainingIndices; var dataset = Content.ProblemData.Dataset; var targetVariable = Content.ProblemData.TargetVariable; var targetValues = dataset.GetDoubleValues(targetVariable, rows); var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).ToArray(); var impactAndReplacementValues = new Dictionary>(); List nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList(); OnlineCalculatorError errorState; double originalR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalOutput, out errorState); if (errorState != OnlineCalculatorError.None) originalR2 = 0.0; foreach (ISymbolicExpressionTreeNode node in nodes) { var parent = node.Parent; constantNode.Value = CalculateReplacementValue(node, tree); ISymbolicExpressionTreeNode replacementNode = constantNode; SwitchNode(parent, node, replacementNode); var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows); double newR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, newOutput, out errorState); if (errorState != OnlineCalculatorError.None) newR2 = 0.0; // impact = 0 if no change // impact < 0 if new solution is better // impact > 0 if new solution is worse double impact = originalR2 - newR2; impactAndReplacementValues[node] = new Tuple(impact, constantNode.Value); SwitchNode(parent, replacementNode, node); } return impactAndReplacementValues; } protected override void UpdateModel(ISymbolicExpressionTree tree) { var model = new SymbolicTimeSeriesPrognosisModel(tree, Content.Model.Interpreter); model.Scale(Content.ProblemData); Content.Model = model; } protected override Dictionary CalculateReplacementValues(ISymbolicExpressionTree tree) { var replacementValues = new Dictionary(); foreach (var componentBranch in tree.Root.GetSubtree(0).Subtrees) foreach (ISymbolicExpressionTreeNode node in componentBranch.IterateNodesPrefix()) { replacementValues[node] = CalculateReplacementValue(node, tree); } return replacementValues; } protected override Dictionary CalculateImpactValues(ISymbolicExpressionTree tree) { var impactAndReplacementValues = CalculateImpactAndReplacementValues(tree); return impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item1); // item1 of the tuple is the impact value } private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) { // remove old ADFs while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1); // clone ADFs of source tree for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) { tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone()); } var start = tempTree.Root.GetSubtree(0); while (start.SubtreeCount > 0) start.RemoveSubtree(0); start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone()); var interpreter = Content.Model.Interpreter; var rows = Content.ProblemData.TrainingIndices; var allPrognosedValues = interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows); return allPrognosedValues.Median(); } private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) { for (int i = 0; i < root.SubtreeCount; i++) { if (root.GetSubtree(i) == oldBranch) { root.RemoveSubtree(i); root.InsertSubtree(i, newBranch); return; } } } protected override void btnOptimizeConstants_Click(object sender, EventArgs e) { throw new NotImplementedException(); } } }