Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.cs @ 5851

Last change on this file since 5851 was 5851, checked in by gkronber, 13 years ago

#1411 added evaluated nodes parameter to symbolic data analysis evaluators.

File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using System.Collections.Generic;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
32  [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]
33  [StorableClass]
34  public class SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
35    [StorableConstructor]
36    protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
37    protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
38      : base(original, cloner) {
39    }
40    public override IDeepCloneable Clone(Cloner cloner) {
41      return new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);
42    }
43
44    public SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator() : base() { }
45
46    public override bool Maximization { get { return true; } }
47
48    public override IOperation Apply() {
49      var solution = SymbolicExpressionTreeParameter.ActualValue;
50      IEnumerable<int> rows = GenerateRowsToEvaluate();
51
52      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
53      QualityParameter.ActualValue = new DoubleValue(quality);
54      AddEvaluatedNodes(solution.Length * rows.Count());
55
56      return base.Apply();
57    }
58
59    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
60      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
61      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
62      double r2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedValues, originalValues);
63      return double.IsNaN(r2) ? 0.0 : r2;
64    }
65
66    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
67      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
68      EstimationLimitsParameter.ExecutionContext = context;
69      EvaluatedNodesParameter.ExecutionContext = context;
70
71      double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
72      AddEvaluatedNodes(tree.Length * rows.Count());
73
74      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
75      EstimationLimitsParameter.ExecutionContext = null;
76      EvaluatedNodesParameter.ExecutionContext = null;
77
78      return r2;
79    }
80  }
81}
Note: See TracBrowser for help on using the repository browser.