#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { [Item("Constant Optimization Evaluator", "Calculates Pearson Rē of a symbolic regression solution and optimizes the constant used.")] [StorableClass] public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator { private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations"; private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement"; private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability"; private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage"; private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree"; private const string UpdateVariableWeightsParameterName = "Update Variable Weights"; public IFixedValueParameter ConstantOptimizationIterationsParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationIterationsParameterName]; } } public IFixedValueParameter ConstantOptimizationImprovementParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationImprovementParameterName]; } } public IFixedValueParameter ConstantOptimizationProbabilityParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationProbabilityParameterName]; } } public IFixedValueParameter ConstantOptimizationRowsPercentageParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationRowsPercentageParameterName]; } } public IFixedValueParameter UpdateConstantsInTreeParameter { get { return (IFixedValueParameter)Parameters[UpdateConstantsInTreeParameterName]; } } public IFixedValueParameter UpdateVariableWeightsParameter { get { return (IFixedValueParameter)Parameters[UpdateVariableWeightsParameterName]; } } public IntValue ConstantOptimizationIterations { get { return ConstantOptimizationIterationsParameter.Value; } } public DoubleValue ConstantOptimizationImprovement { get { return ConstantOptimizationImprovementParameter.Value; } } public PercentValue ConstantOptimizationProbability { get { return ConstantOptimizationProbabilityParameter.Value; } } public PercentValue ConstantOptimizationRowsPercentage { get { return ConstantOptimizationRowsPercentageParameter.Value; } } public bool UpdateConstantsInTree { get { return UpdateConstantsInTreeParameter.Value.Value; } set { UpdateConstantsInTreeParameter.Value.Value = value; } } public bool UpdateVariableWeights { get { return UpdateVariableWeightsParameter.Value.Value; } set { UpdateVariableWeightsParameter.Value.Value = value; } } public override bool Maximization { get { return true; } } [StorableConstructor] protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { } protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionConstantOptimizationEvaluator() : base() { Parameters.Add(new FixedValueParameter(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true) { Hidden = true }); Parameters.Add(new FixedValueParameter(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true)); Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true }); Parameters.Add(new FixedValueParameter(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true }); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(UpdateConstantsInTreeParameterName)) Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true))); if (!Parameters.ContainsKey(UpdateVariableWeightsParameterName)) Parameters.Add(new FixedValueParameter(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true))); } public override IOperation InstrumentedApply() { var solution = SymbolicExpressionTreeParameter.ActualValue; double quality; if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) { IEnumerable constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value); quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue, constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree); if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) { var evaluationRows = GenerateRowsToEvaluate(); quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value); } } else { var evaluationRows = GenerateRowsToEvaluate(); quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value); } QualityParameter.ActualValue = new DoubleValue(quality); return base.InstrumentedApply(); } public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) { SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; EstimationLimitsParameter.ExecutionContext = context; ApplyLinearScalingParameter.ExecutionContext = context; // Pearson Rē evaluator is used on purpose instead of the const-opt evaluator, // because Evaluate() is used to get the quality of evolved models on // different partitions of the dataset (e.g., best validation model) double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value); SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; EstimationLimitsParameter.ExecutionContext = null; ApplyLinearScalingParameter.ExecutionContext = null; return r2; } public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling, int maxIterations, bool updateVariableWeights = true, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue, bool updateConstantsInTree = true) { string[] variableNames; int[] lags; double[] constants; TreeToAutoDiffTermConverter.ParametricFunction func; TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad; if (!TreeToAutoDiffTermConverter.TryTransformToAutoDiff(tree, updateVariableWeights, out variableNames, out lags, out constants, out func, out func_grad)) throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree."); if (variableNames.Length == 0) return 0.0; //extract inital constants double[] c = new double[constants.Length + 2]; c[0] = 0.0; c[1] = 1.0; Array.Copy(constants, 0, c, 2, constants.Length); double[] originalConstants = (double[])c.Clone(); double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); alglib.lsfitstate state; alglib.lsfitreport rep; int info; // TODO: refactor IDataset ds = problemData.Dataset; double[,] x = new double[rows.Count(), variableNames.Length]; int row = 0; foreach (var r in rows) { for (int col = 0; col < variableNames.Length; col++) { int lag = lags[col]; x[row, col] = ds.GetDoubleValue(variableNames[col], r + lag); } row++; } double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray(); int n = x.GetLength(0); int m = x.GetLength(1); int k = c.Length; alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(func); alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(func_grad); try { alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state); alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations); //alglib.lsfitsetgradientcheck(state, 0.001); alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null); alglib.lsfitresults(state, out info, out c, out rep); } catch (ArithmeticException) { return originalQuality; } catch (alglib.alglibexception) { return originalQuality; } //info == -7 => constant optimization failed due to wrong gradient if (info != -7) UpdateConstants(tree, c.Skip(2).ToArray(), updateVariableWeights); var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.Skip(2).ToArray(), updateVariableWeights); if (originalQuality - quality > 0.001 || double.IsNaN(quality)) { UpdateConstants(tree, originalConstants.Skip(2).ToArray(), updateVariableWeights); return originalQuality; } return quality; } private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants, bool updateVariableWeights) { int i = 0; foreach (var node in tree.Root.IterateNodesPrefix().OfType()) { ConstantTreeNode constantTreeNode = node as ConstantTreeNode; VariableTreeNode variableTreeNode = node as VariableTreeNode; if (constantTreeNode != null) constantTreeNode.Value = constants[i++]; else if (updateVariableWeights && variableTreeNode != null) variableTreeNode.Weight = constants[i++]; } } private static alglib.ndimensional_pfunc CreatePFunc(TreeToAutoDiffTermConverter.ParametricFunction func) { return (double[] c, double[] x, ref double fx, object o) => { fx = func(c, x); }; } private static alglib.ndimensional_pgrad CreatePGrad(TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad) { return (double[] c, double[] x, ref double fx, double[] grad, object o) => { var tupel = func_grad(c, x); fx = tupel.Item2; Array.Copy(tupel.Item1, grad, grad.Length); }; } public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) { return TreeToAutoDiffTermConverter.IsCompatible(tree); } } }