#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Problems.DataAnalysis.Symbolic.Views; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views { public partial class InteractiveSymbolicRegressionSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView { private readonly ConstantTreeNode constantNode; private readonly SymbolicExpressionTree tempTree; public new SymbolicRegressionSolution Content { get { return (SymbolicRegressionSolution)base.Content; } set { base.Content = value; } } public InteractiveSymbolicRegressionSolutionSimplifierView() : base() { InitializeComponent(); this.Caption = "Interactive Regression Solution Simplifier"; constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode()); ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode(); ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode(); root.AddSubtree(start); tempTree = new SymbolicExpressionTree(root); } protected override void UpdateModel(ISymbolicExpressionTree tree) { var model = new SymbolicRegressionModel(tree, Content.Model.Interpreter, Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit); SymbolicRegressionModel.Scale(model, Content.ProblemData, Content.ProblemData.TargetVariable); Content.Model = model; } protected override Dictionary CalculateReplacementValues(ISymbolicExpressionTree tree) { Dictionary replacementValues = new Dictionary(); foreach (ISymbolicExpressionTreeNode node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) { replacementValues[node] = CalculateReplacementValue(node, tree); } return replacementValues; } protected override Dictionary CalculateImpactValues(ISymbolicExpressionTree tree) { var interpreter = Content.Model.Interpreter; var dataset = Content.ProblemData.Dataset; var rows = Content.ProblemData.TrainingIndices; string targetVariable = Content.ProblemData.TargetVariable; Dictionary impactValues = new Dictionary(); List nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList(); var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit).ToArray(); var targetValues = dataset.GetDoubleValues(targetVariable, rows); OnlineCalculatorError errorState; double originalR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalOutput, out errorState); if (errorState != OnlineCalculatorError.None) originalR2 = 0.0; foreach (ISymbolicExpressionTreeNode node in nodes) { var parent = node.Parent; constantNode.Value = CalculateReplacementValue(node, tree); ISymbolicExpressionTreeNode replacementNode = constantNode; SwitchNode(parent, node, replacementNode); var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit); double newR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, newOutput, out errorState); if (errorState != OnlineCalculatorError.None) newR2 = 0.0; // impact = 0 if no change // impact < 0 if new solution is better // impact > 0 if new solution is worse impactValues[node] = originalR2 - newR2; SwitchNode(parent, replacementNode, node); } return impactValues; } private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) { // remove old ADFs while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1); // clone ADFs of source tree for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) { tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone()); } var start = tempTree.Root.GetSubtree(0); while (start.SubtreeCount > 0) start.RemoveSubtree(0); start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone()); var interpreter = Content.Model.Interpreter; var rows = Content.ProblemData.TrainingIndices; return interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows) .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit) .Median(); } private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) { for (int i = 0; i < root.SubtreeCount; i++) { if (root.GetSubtree(i) == oldBranch) { root.RemoveSubtree(i); root.InsertSubtree(i, newBranch); return; } } } protected override void OnModelChanged() { base.OnModelChanged(); if (Content != null) btnOptimizeConstants.Enabled = SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(Content.Model.SymbolicExpressionTree); else btnOptimizeConstants.Enabled = false; } protected override void OnContentChanged() { base.OnContentChanged(); base.OnModelChanged(); if (Content != null) btnOptimizeConstants.Enabled = SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(Content.Model.SymbolicExpressionTree); else btnOptimizeConstants.Enabled = false; } protected override void btnOptimizeConstants_Click(object sender, EventArgs e) { var model = Content.Model; SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(Content.Model.Interpreter, Content.Model.SymbolicExpressionTree, Content.ProblemData, Content.ProblemData.TrainingIndices, applyLinearScaling: true, maxIterations: 50, upperEstimationLimit: model.UpperEstimationLimit, lowerEstimationLimit: model.LowerEstimationLimit); UpdateModel(Content.Model.SymbolicExpressionTree); } } }