1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System.Drawing;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
31 | [StorableClass]
|
---|
32 | [Item("NormalDistributedThresholdsModelCreator", "")]
|
---|
33 | public sealed class NormalDistributedThresholdsModelCreator : Item, ISymbolicDiscriminantFunctionClassificationModelCreator {
|
---|
34 | public static new Image StaticItemImage {
|
---|
35 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
|
---|
36 | }
|
---|
37 | public override Image ItemImage {
|
---|
38 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
|
---|
39 | }
|
---|
40 | [StorableConstructor]
|
---|
41 | private NormalDistributedThresholdsModelCreator(bool deserializing) : base(deserializing) { }
|
---|
42 | private NormalDistributedThresholdsModelCreator(NormalDistributedThresholdsModelCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
43 | public NormalDistributedThresholdsModelCreator() : base() { }
|
---|
44 |
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) { return new NormalDistributedThresholdsModelCreator(this, cloner); }
|
---|
46 |
|
---|
47 |
|
---|
48 | public ISymbolicClassificationModel CreateSymbolicClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
49 | return CreateSymbolicDiscriminantFunctionClassificationModel(tree, interpreter, lowerEstimationLimit, upperEstimationLimit);
|
---|
50 | }
|
---|
51 | public ISymbolicDiscriminantFunctionClassificationModel CreateSymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
52 | return new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter, new NormalDistributionCutPointsThresholdCalculator(), lowerEstimationLimit, upperEstimationLimit);
|
---|
53 | }
|
---|
54 |
|
---|
55 | }
|
---|
56 | }
|
---|