#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Windows.Forms; using HeuristicLab.Common; using HeuristicLab.MainForm.WindowsForms; using HeuristicLab.Problems.DataAnalysis.Symbolic.Views; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views { public partial class InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView { private readonly ConstantTreeNode constantNode; private readonly SymbolicExpressionTree tempTree; public new SymbolicDiscriminantFunctionClassificationSolution Content { get { return (SymbolicDiscriminantFunctionClassificationSolution)base.Content; } set { base.Content = value; } } public InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView() : base() { InitializeComponent(); this.Caption = "Interactive Classification Solution Simplifier"; constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode()); ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode(); ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode(); root.AddSubtree(start); tempTree = new SymbolicExpressionTree(root); } protected override void UpdateModel(ISymbolicExpressionTree tree) { Content.Model = new SymbolicDiscriminantFunctionClassificationModel(tree, Content.Model.Interpreter); Content.SetClassDistibutionCutPointThresholds(); } protected override Dictionary CalculateReplacementValues(ISymbolicExpressionTree tree) { Dictionary replacementValues = new Dictionary(); foreach (ISymbolicExpressionTreeNode node in tree.IterateNodesPrefix()) { if (!(node.Symbol is ProgramRootSymbol || node.Symbol is StartSymbol)) { replacementValues[node] = CalculateReplacementValue(node); } } return replacementValues; } protected override Dictionary CalculateImpactValues(ISymbolicExpressionTree tree) { var interpreter = Content.Model.Interpreter; var dataset = Content.ProblemData.Dataset; var rows = Content.ProblemData.TrainingIndizes; string targetVariable = Content.ProblemData.TargetVariable; Dictionary impactValues = new Dictionary(); List nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList(); var targetClassValues = dataset.GetEnumeratedVariableValues(targetVariable, rows); var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows) .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit) .ToArray(); double[] classValues; double[] thresholds; NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, originalOutput, targetClassValues, out classValues, out thresholds); var classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter); classifier.SetThresholdsAndClassValues(thresholds, classValues); OnlineCalculatorError errorState; double originalAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, classifier.GetEstimatedClassValues(dataset, rows), out errorState); if (errorState != OnlineCalculatorError.None) originalAccuracy = 0.0; foreach (ISymbolicExpressionTreeNode node in nodes) { var parent = node.Parent; constantNode.Value = CalculateReplacementValue(node); ISymbolicExpressionTreeNode replacementNode = constantNode; SwitchNode(parent, node, replacementNode); var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows) .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit) .ToArray(); NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, newOutput, targetClassValues, out classValues, out thresholds); classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter); classifier.SetThresholdsAndClassValues(thresholds, classValues); double newAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, classifier.GetEstimatedClassValues(dataset, rows), out errorState); if (errorState != OnlineCalculatorError.None) newAccuracy = 0.0; // impact = 0 if no change // impact < 0 if new solution is better // impact > 0 if new solution is worse impactValues[node] = originalAccuracy - newAccuracy; SwitchNode(parent, replacementNode, node); } return impactValues; } private double CalculateReplacementValue(ISymbolicExpressionTreeNode node) { var start = tempTree.Root.GetSubtree(0); while (start.SubtreesCount > 0) start.RemoveSubtree(0); start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone()); var interpreter = Content.Model.Interpreter; var rows = Content.ProblemData.TrainingIndizes; return interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows).Median(); } private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) { for (int i = 0; i < root.SubtreesCount; i++) { if (root.GetSubtree(i) == oldBranch) { root.RemoveSubtree(i); root.InsertSubtree(i, newBranch); return; } } } } }