#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Analyzers; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Creators; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Interfaces; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers; using HeuristicLab.Problems.DataAnalysis.Symbolic; namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic { [Item("Symbolic Regression Problem (multi objective)", "Represents a multi objective symbolic regression problem.")] [Creatable("Problems")] [StorableClass] public class MultiObjectiveSymbolicRegressionProblem : SymbolicRegressionProblemBase, IMultiObjectiveProblem { #region Parameter Properties public ValueParameter MaximizationParameter { get { return (ValueParameter)Parameters["Maximization"]; } } IParameter IMultiObjectiveProblem.MaximizationParameter { get { return MaximizationParameter; } } public new ValueParameter EvaluatorParameter { get { return (ValueParameter)Parameters["Evaluator"]; } } IParameter IProblem.EvaluatorParameter { get { return EvaluatorParameter; } } #endregion #region Properties public new IMultiObjectiveSymbolicRegressionEvaluator Evaluator { get { return EvaluatorParameter.Value; } set { EvaluatorParameter.Value = value; } } IMultiObjectiveEvaluator IMultiObjectiveProblem.Evaluator { get { return EvaluatorParameter.Value; } } IEvaluator IProblem.Evaluator { get { return EvaluatorParameter.Value; } } #endregion [StorableConstructor] protected MultiObjectiveSymbolicRegressionProblem(bool deserializing) : base(deserializing) { } public MultiObjectiveSymbolicRegressionProblem() : base() { var evaluator = new MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(); Parameters.Add(new ValueParameter("Maximization", "Set to false as the error of the regression model should be minimized.", new BoolArray(new bool[] { false, false }))); Parameters.Add(new ValueParameter("Evaluator", "The operator which should be used to evaluate symbolic regression solutions.", evaluator)); evaluator.QualitiesParameter.ActualName = "TrainingRSquared/Size"; ParameterizeEvaluator(); RegisterParameterEvents(); RegisterParameterValueEvents(); } public override IDeepCloneable Clone(Cloner cloner) { MultiObjectiveSymbolicRegressionProblem clone = (MultiObjectiveSymbolicRegressionProblem)base.Clone(cloner); clone.RegisterParameterEvents(); clone.RegisterParameterValueEvents(); return clone; } private void RegisterParameterValueEvents() { EvaluatorParameter.ValueChanged += new EventHandler(EvaluatorParameter_ValueChanged); } private void RegisterParameterEvents() { } #region event handling protected override void OnDataAnalysisProblemChanged(EventArgs e) { base.OnDataAnalysisProblemChanged(e); // paritions could be changed ParameterizeEvaluator(); } protected override void OnSolutionParameterNameChanged(EventArgs e) { ParameterizeEvaluator(); } protected override void OnEvaluatorChanged(EventArgs e) { base.OnEvaluatorChanged(e); ParameterizeEvaluator(); RaiseEvaluatorChanged(e); } #endregion #region event handlers private void EvaluatorParameter_ValueChanged(object sender, EventArgs e) { OnEvaluatorChanged(e); } #endregion #region Helpers [StorableHook(HookType.AfterDeserialization)] private void AfterDeserializationHook() { RegisterParameterEvents(); RegisterParameterValueEvents(); } private void ParameterizeEvaluator() { Evaluator.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName; Evaluator.RegressionProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name; Evaluator.SamplesStartParameter.Value = TrainingSamplesStart; Evaluator.SamplesEndParameter.Value = TrainingSamplesEnd; } #endregion } }